334 research outputs found

    Mathematical model predicts anti-adhesion--antibiotic--debridement combination therapies can clear an antibiotic resistant infection

    Get PDF
    As antimicrobial resistance increases, it is crucial to develop new treatment strategies to counter the emerging threat. In this paper, we consider combination therapies involving conventional antibiotics and debridement, coupled with a novel anti-adhesion therapy, and their use in the treatment of antimicrobial resistant burn wound infections. Our models predict that anti-adhesion–antibiotic–debridement combination therapies can eliminate a bacterial infection in cases where each treatment in isolation would fail. Antibiotics are assumed to have a bactericidal mode of action, killing bacteria, while debridement involves physically cleaning a wound (e.g. with a cloth); removing free bacteria. Anti-adhesion therapy can take a number of forms. Here we consider adhesion inhibitors consisting of polystyrene microbeads chemically coupled to a protein known as multivalent adhesion molecule 7, an adhesin which mediates the initial stages of attachment of many bacterial species to host cells. Adhesion inhibitors competitively inhibit bacteria from binding to host cells, thus rendering them susceptible to removal through debridement. An ordinary differential equation model is developed and the antibiotic-related parameters are fitted against new in vitro data gathered for the present study. The model is used to predict treatment outcomes and to suggest optimal treatment strategies. Our model predicts that anti-adhesion and antibiotic therapies will combine synergistically, producing a combined effect which is often greater than the sum of their individual effects, and that anti-adhesion–antibiotic–debridement combination therapy will be more effective than any of the treatment strategies used in isolation. Further, the use of inhibitors significantly reduces the minimum dose of antibiotics required to eliminate an infection, reducing the chances that bacteria will develop increased resistance. Lastly, we use our model to suggest treatment regimens capable of eliminating bacterial infections within clinically relevant timescales

    Against the tide: the role of bacterial adhesion in host colonization

    Get PDF
    Evolving under the constant exposure to an abundance of diverse microbial life, the human body has developed many ways of defining the boundaries between self and non-self. Many physical and immunological barriers to microbial invasion exist, and yet bacteria have found a multitude of ways to overcome these, initiate interactions with and colonize the human host. Adhesion to host cells and tissues is a key feature allowing bacteria to persist in an environment under constant flux and to initiate transient or permanent symbioses with the host. This review discusses reasons why adhesion is such a seemingly indispensable requirement for bacteria–host interactions, and whether bacteria can bypass the need to adhere and still persist. It further outlines open questions about the role of adhesion in bacterial colonization and persistence within the host

    Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds

    Get PDF
    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model

    Hexanuclear and undecanuclear iron(III) carboxylates as catalyst precursors for cyclohexane oxidation

    Get PDF
    Two multinuclear complexes [Fe-6(mu(3)-O)(2)(mu(4)-O-2)L-10(OAc)(2)(H2O)(2)]center dot 2.625Et(2)O center dot 2.375H(2)O (1) and [(Fe11Cl)-Cl-III-(mu(4)-O)(3)(mu(3)-O)(5)L-16(dmf)(2.5)(H2O)(0.5)]center dot Et2O center dot 1.25dmf center dot 3.8H(2)O (2), where HL = 3,4,5-trimethoxybenzoic acid and dmf = dimethylformamide, have been prepared from trinuclear iron(III) carboxylates via their structural rearrangement in dimethylformamide or diethyl ether-dimethylformamide 9:1, respectively, and slow vapor diffusion of diethyl ether into the reaction mixture. Both compounds have been characterized by X-ray diffraction, optical, Mossbauer spectroscopy, and magnetic measurements. Complex 1 possesses a hexanuclear ferric peroxido-dioxido {Fe-6(O-2)(O)(2)}(12+) core unit, which adopts a recliner conformation, while complex 2 contains an unprecedented {Fe11O8Cl}(16+) core, in which 9 ferric ions are six-coordinate and the remaining two are five-coordinate. Another structural feature of note of the undecanuclear core is the presence of a deformed cubane entity {Fe-4(mu(3)-O)(mu(4)-O)(3)}(4+). Both complexes act as catalyst precursors for the oxidation of cyclohexane to cyclohexanol and cyclohexanone with aqueous H2O2, in the presence of pyrazinecarboxylic acid. Remarkable TONs and TOFs (the latter mainly for 1) with concomitant quite good yields have been achieved under mild conditions. Moreover, 1 exhibits remarkably high activity in an exceptionally short reaction time (45 min), being unprecedented for any metal catalyzed alkane oxidation by H2O2. The catalytic reactions proceed via Fenton type chemistry

    Stable-Isotope and Trace Element Time Series from Fedchenko Glacier (Pamirs) Snow/Firn Cores

    Get PDF
    In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world\u27s longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century

    Reported food intake and distribution of body fat: a repeated cross-sectional study

    Get PDF
    BACKGROUND: Body mass, as well as distribution of body fat, are predictors of both diabetes and cardiovascular disease. In Northern Sweden, despite a marked increase in average body mass, prevalence of diabetes was stagnant and myocardial infarctions decreased. A more favourable distribution of body fat is a possible contributing factor. This study investigates the relative importance of individual food items for time trends in waist circumference (WC) and hip circumference (HC) on a population level. METHODS: Independent cross-sectional surveys conducted in 1986, 1990, 1994 and 1999 in the two northernmost counties of Sweden with a common population of 250000. Randomly selected age stratified samples, altogether 2982 men and 3087 women aged 25–64 years. Questionnaires were completed and anthropometric measurements taken. For each food item, associations between frequency of consumption and waist and hip circumferences were estimated. Partial regression coefficients for every level of reported intake were multiplied with differences in proportion of the population reporting the corresponding levels of intake in 1986 and 1999. The sum of these product terms for every food item was the respective estimated impact on mean circumference. RESULTS: Time trends in reported food consumption associated with the more favourable gynoid distribution of adipose tissue were increased use of vegetable oil, pasta and 1.5% fat milk. Trends associated with abdominal obesity were increased consumption of beer in men and higher intake of hamburgers and French fried potatoes in women. CONCLUSION: Food trends as markers of time trends in body fat distribution have been identified. The method is a complement to conventional approaches to establish associations between food intake and disease risk on a population level

    Displacement of Pathogens by an Engineered Bacterium Is a Multifactorial Process That Depends on Attachment Competition and Interspecific Antagonism

    Get PDF
    Pathogen attachment to host cells is a key process during infection, and inhibition of pathogen adhesion is a promising approach to the prevention of infectious disease. We have previously shown that multivalent adhesion molecules (MAMs) are abundant in both pathogenic and commensal bacterial species, mediate early attachment to host cells, and can contribute to virulence. Here, we investigated the efficacy of an engineered bacterium expressing a commensal MAM on its surface in preventing pathogen attachment and pathogen-mediated cytotoxicity in a tissue culture infection model. We were able to dissect the individual contributions of adhesion and interspecific antagonism on the overall outcome of infection for a range of different pathogens by comparison with the results obtained with a fully synthetic adhesion inhibitor. We found that the potential of the engineered bacterium to outcompete the pathogen is not always solely dependent on its ability to hinder host attachment but, depending on the pathogenic species, may also include elements of interspecific antagonism, such as competition for nutrients and its ability to cause a loss of fitness due to production of antimicrobial factors

    Antarctic-wide array of high-resolution ice core records reveals pervasive leadpollution began in 1889 and persists today

    Get PDF
    Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 – beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells
    • …
    corecore