136 research outputs found
Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP
Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are
used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~
events. Spin correlations are favoured by data, and found to agree with the
Standard Model predictions. In addition, correlations between the W-boson decay
planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events.
Decay-plane correlations, consistent with zero and with the Standard Model
predictions, are measured
Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP
The cross section for open-beauty production in photon-photon collisions is
measured using the whole high-energy and high-luminosity data sample collected
by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity
for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events
containing b quarks are identified through their semi-leptonic decay into
electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our
fiducial volume and then extrapolated to the full phase space. These results
are found to be in significant excess with respect to Monte Carlo predictions
and next-to-leading order QCD calculations
Ultrarelativistic sources in nonlinear electrodynamics
The fields of rapidly moving sources are studied within nonlinear
electrodynamics by boosting the fields of sources at rest. As a consequence of
the ultrarelativistic limit the delta-like electromagnetic shock waves are
found. The character of the field within the shock depends on the theory of
nonlinear electrodynamics considered. In particular, we obtain the field of an
ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure
Search for Branons at LEP
We search, in the context of extra-dimension scenarios, for the possible
existence of brane fluctuations, called branons. Events with a single photon or
a single Z-boson and missing energy and momentum collected with the L3 detector
in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are
analysed. No excess over the Standard Model expectations is found and a lower
limit at 95% confidence level of 103 GeV is derived for the mass of branons,
for a scenario with small brane tensions. Alternatively, under the assumption
of a light branon, brane tensions below 180 GeV are excluded
Search for Branons at LEP
We search, in the context of extra-dimension scenarios, for the possible
existence of brane fluctuations, called branons. Events with a single photon or
a single Z-boson and missing energy and momentum collected with the L3 detector
in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are
analysed. No excess over the Standard Model expectations is found and a lower
limit at 95% confidence level of 103 GeV is derived for the mass of branons,
for a scenario with small brane tensions. Alternatively, under the assumption
of a light branon, brane tensions below 180 GeV are excluded
Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP
Exclusive rho rho production in two-photon collisions involving a single
highly virtual photon is studied with data collected at LEP at centre-of-mass
energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of
854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is
determined as a function of the photon virtuality, Q^2 and the two-photon
centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2
and 1.1GeV < Wgg < 3GeV
Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV
A search for charginos nearly mass-degenerate with the lightest
supersymmetric particle is performed using the 176 pb^-1 of data collected at
189 GeV in 1998 with the L3 detector. Mass differences between the chargino and
the lightest supersymmetric particle below 4 GeV are considered. The presence
of a high transverse momentum photon is required to single out the signal from
the photon-photon interaction background. No evidence for charginos is found
and upper limits on the cross section for chargino pair production are set. For
the first time, in the case of heavy scalar leptons, chargino mass limits are
obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference
Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV
We report the result of a search for scalar leptons in e+e- collisions at 189
GeV centre-of-mass energy at LEP. No evidence for such particles is found in a
data sample of 176 pb^{-1}. Improved upper limits are set on the production
cross sections for these new particles. New exclusion contours in the parameter
space of the Minimal Supersymmetric Standard Model are derived, as well as new
lower limits on the masses of these supersymmetric particles. Under the
assumptions of common gaugino and scalar masses at the GUT scale, we set an
absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge
Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV
The pair production of Z bosons is studied using the data collected by the L3
detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189
GeV. All the visible final states are considered and the cross section of this
process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final
states containing b quarks are enhanced by a dedicated selection and their
production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02
(syst.) pb. Both results are in agreement with the Standard Model predictions.
Limits on anomalous couplings between neutral gauge bosons are derived from
these measurements
Study of Z Boson Pair Production in e^+e^- Interactions at \sqrt{s}=192 - 202 GeV
The cross section for the production of Z boson pairs is measured using the
data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at
centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the
visible final states are selected, measuring the cross section of this process.
The special case of final states containing b quarks is also investigated. All
results are in agreement with the Standard Model predictions
- âŠ