8,874 research outputs found
Group theory of Wannier functions providing the basis for a deeper understanding of magnetism and superconductivity
The paper presents the group theory of best localized and symmetry-adapted
Wannier functions in a crystal of any given space group G or magnetic group M.
Provided that the calculated band structure of the considered material is given
and that the symmetry of the Bloch functions at all the points of symmetry in
the Brillouin zone is known, the paper details whether or not the Bloch
functions of particular energy bands can be unitarily transformed into best
localized Wannier functions symmetry-adapted to the space group G, to the
magnetic group M, or to a subgroup of G or M. In this context, the paper
considers usual as well as spin-dependent Wannier functions, the latter
representing the most general definition of Wannier functions. The presented
group theory is a review of the theory published by one of the authors in
several former papers and is independent of any physical model of magnetism or
superconductivity. However, it is suggested to interpret the special symmetry
of the best localized Wannier functions in the framework of a nonadiabatic
extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the
basis of the symmetry of the Wannier functions, this model of strongly
correlated localized electrons makes clear predictions whether or not the
system can possess superconducting or magnetic eigenstates
The reason why doping causes superconductivity in LaFeAsO
The experimental observation of superconductivity in LaFeAsO appearing on
doping is analyzed with the group-theoretical approach that evidently led in a
foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause
of both the antiferromagnetic state and the accompanying structural distortion
in this material. Doping, like the structural distortions, means also a
reduction of the symmetry of the pure perfect crystal. In the present paper we
show that this reduction modifies the correlated motion of the electrons in a
special narrow half-filled band of LaFeAsO in such a way that these electrons
produce a stable superconducting state
Galileo In-Situ Dust Measurements in Jupiter's Gossamer Rings
During its late orbital mission at Jupiter the Galileo spacecraft made two
passages through the giant planet's gossamer ring system. The impact-ionization
dust detector on board successfully recorded dust impacts during both ring
passages and provided the first in-situ measurements from a dusty planetary
ring. In all, a few thousand dust impacts were counted with the instrument
accumulators during both ring passages, but only a total of 110 complete data
sets of dust impacts were transmitted to Earth. Detected particle sizes range
from about 0.2 to 5 micron, extending the known size distribution by an order
of magnitude towards smaller particles than previously derived from optical
imaging (Showalter et al. 2008). The grain size distribution increases towards
smaller particles and shows an excess of these tiny motes in the Amalthea
gossamer ring compared to the Thebe ring. The size distribution for the
Amalthea ring derived from our in-situ measurements for the small grains agrees
very well with the one obtained from images for large grains. Our analysis
shows that particles contributing most to the optical cross-section are about 5
micron in radius, in agreement with imaging results. The measurements indicate
a large drop in particle flux immediately interior to Thebe's orbit and some
detected particles seem to be on highly-tilted orbits with inclinations up to
20 deg.Comment: 13 figures, 4 tables, submitted to Icaru
Density profiles of a colloidal liquid at a wall under shear flow
Using a dynamical density functional theory we analyze the density profile of
a colloidal liquid near a wall under shear flow. Due to the symmetries of the
system considered, the naive application of dynamical density functional theory
does not lead to a shear induced modification of the equilibrium density
profile, which would be expected on physical grounds. By introducing a
physically motivated dynamic mean field correction we incorporate the missing
shear induced interparticle forces into the theory. We find that the shear flow
tends to enhance the oscillations in the density profile of hard-spheres at a
hard-wall and, at sufficiently high shear rates, induces a nonequilibrium
transition to a steady state characterized by planes of particles parallel to
the wall. Under gravity, we find that the center-of-mass of the density
distribution increases with shear rate, i.e., shear increases the potential
energy of the particles
The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach
As experimentally well established, undoped LaFeAsO is antiferromagnetic
below 137K with the magnetic moments lying on the Fe sites. We determine the
orthorhombic body-centered group Imma (74) as the space group of the
experimentally observed magnetic structure in the undistorted lattice, i.e., in
a lattice possessing no structural distortions in addition to the
magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic
band" with Bloch functions that can be unitarily transformed into optimally
localized Wannier functions adapted to the space group Imma. This finding is
interpreted in the framework of a nonadiabatic extension of the Heisenberg
model of magnetism, the nonadiabatic Heisenberg model. Within this model,
however, the magnetic structure with the space group Imma is not stable but can
be stabilized by a (slight) distortion of the crystal turning the space group
Imma into the space group Pnn2 (34). This group-theoretical result is in
accordance with the experimentally observed displacements of the Fe and O atoms
in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]
One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization
We start from a Lagrangian describing scalar "nucleons" and mesons which
interact through a simple vertex. Okubo's method of unitary transformation is
used to describe a single nucleon dressed by its meson cloud. We find an
expression for the physical mass of the nucleon being correct up to second
order in the coupling constant. It is then verified that this result is the
same as the corresponding expression found by Feynman techniques. Finally we
also express the three boost operators in terms of the physical nucleon mass.
Doing so we find expressions for all the ten generators of Poincar\'e
transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure
- …