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Abstract: The paper presents the group theory of optimally-localized and
symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic
group M. Provided that the calculated band structure of the considered material is given and
that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone
is known, the paper details whether or not the Bloch functions of particular energy bands can
be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to
the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the
paper considers usual, as well as spin-dependent Wannier functions, the latter representing
the most general definition of Wannier functions. The presented group theory is a review
of the theory published by one of the authors (Ekkehard Krüger) in several former papers
and is independent of any physical model of magnetism or superconductivity. However, it
is suggested to interpret the special symmetry of the optimally-localized Wannier functions
in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic
Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of
strongly-correlated localized electrons makes clear predictions of whether or not the system
can possess superconducting or magnetic eigenstates.
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1. Introduction

The picture of strongly-correlated localized or nearly-localized electrons is the basis of a successful
theoretical description of both high-temperature superconductivity and magnetism (see, e.g., [1–3] and
the citations given there). The appertaining localized electron states are often represented by atomic
orbitals that define, for instance, partially filled s-, d- or p- bands.

Another option is to represent the localized electron states by optimally-localized and
symmetry-adapted Wannier functions. In contrast to atomic functions, Wannier functions situated at
adjacent atoms are orthogonal and form a complete set of basis functions within the considered narrow,
partially filled band. Consequently, Wannier functions contain all of the physical information about this
energy band. At first, however, the use of Wannier functions within the theory of superconductivity
and magnetism appears to be hampered by the well-known fact that we need a closed complex of
energy bands (Definition 1) for the construction of optimally-localized Wannier functions. Such closed
complexes, however, do not exist in the band structures of the metals where all of the bands are connected
to each other by band degeneracies.

In the literature, there have been proposed several procedures to tackle this problem; see, e.g., the
review article [4]. The present paper, however, and all of the papers of the authors published previously
(and cited below) solve this problem in another way, by constructing Wannier functions with the reduced
symmetry of a magnetic group or by constructing spin-dependent Wannier functions. In both cases,
interfering band degeneracies are sometimes removed in the band structure with the reduced symmetry.
The physical power of this natural method of producing closed complexes of energy bands in suitable
band structures is corroborated by two observations:

(i) Materials possessing a magnetic structure with the magnetic group M also possess a closed,
narrow and roughly half-filled complex of energy bands in their band structure whose Bloch
functions can be unitarily transformed into optimally-localized Wannier functions that are
symmetry-adapted to the magnetic group M . These energy bands form a “magnetic band”; see
Definition 16.

(ii) Both normal and high-temperature superconductors (and only superconductors) possess a closed,
narrow and roughly half-filled complex of energy bands in their band structure whose Bloch
spinors can be unitarily transformed into optimally-localized spin-dependent Wannier functions
that are symmetry-adapted to the (full) space group G of the material. These energy bands form a
“superconducting band”; see Definition 22.

The first observation (i) was made at the band structures of Cr [5], Fe [6], La2CuO4 [7],
YBa2Cu3O6 [8], undoped LaFeAsO [9] and BaFe2As2 [10]; the second observation (ii) at the band
structures of numerous elemental superconductors [11] and of the (high-temperature) superconductors
La2CuO4 [7], YBa2Cu3O7 [12], MgB2 [12] and doped LaFeAsO [13]. It is particularly important that
partly filled superconducting bands cannot be found in those elemental metals (such as Li, Na, K, Rb,
Cs, Ca, Cu, Ag and Au) that do not become superconducting [11]. An investigation into the band
structures of the transition metals in terms of superconducting bands straightforwardly leads to the
Matthias rule [14].
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These two observations can be interpreted in a clear way within a nonadiabatic extension of the
Heisenberg model, the nonadiabatic Heisenberg model [12,15]. This model of strongly-correlated
localized electrons is determined by three new postulates and defines a nonadiabatic mechanism
stabilizing the hopping motion in narrow bands. On the basis of the symmetry of the Wannier functions,
the nonadiabatic model makes clear predictions of whether or not the related nonadiabatic Hamiltonian
Hn can possess superconducting or magnetic eigenstates [5,10,11,16]. In this context, the nonadiabatic
Heisenberg model no longer uses terms like s-, p- or d-bands, but only speaks of superconducting or
magnetic bands.

In some materials, the nonadiabatic Heisenberg model predicts that a small distortion of the lattice
or a doping is required for the stability of the superconducting or magnetic state. Thus, in undoped
LaFeAsO [9] and in BaFe2As2 [10], the antiferromagnetic state must be stabilized by an experimentally
well-established distortion [17,18], while in YBa2Cu3O6 [8], it is stable in the undistorted crystal.
Superconductivity in LaFeAsO [9] requires the experimentally-confirmed doping [18–21]. Furthermore,
the superconducting state in LiFeAs [22] should be accompanied by a small distortion of the lattice,
which, to our knowledge, is experimentally not yet confirmed. Superconductivity in YBa2Cu3O7 [12],
MgB2 [12], as well as in the transition elements [11] (such as in Nb [16]), on the other hand, does not
require any distortion or doping.

In the case of (conventional and high-Tc [23]) superconductivity, the nonadiabatic Heisenberg model
provides a new mechanism of Cooper pair formation, which may be described in terms of constraining
forces [16] and spring-mounted Cooper pairs [24].

Any application of the nonadiabatic Heisenberg model starts with an examination of whether or not
there exist closed band complexes with optimally-localized symmetry-adapted usual or spin-dependent
Wannier functions in the band structure of the material under consideration. In the following (in
Sections 2–7), we shall summarize and update the group theory of Wannier functions as published in
former papers and give a detailed description of how to determine the symmetry of optimally-localized
Wannier functions if they exist in the given band structure. In Sections 2–6, we shall consider
usual (i.e., spin-independent) Wannier functions as defined in the first subsection of Section 2. In
the following subsections of Section 2 and in Sections 3–5, the spatial symmetry of the Wannier
functions will be specified. The central theorem to determine the spatial symmetry of optimally-localized
symmetry-adapted Wannier functions will be Theorem 5. Then, in Section 6, we shall consider magnetic
groups by adding the time-inversion symmetry. Finally, in Section 7, we shall define and specify
spin-dependent Wannier functions.

Since we use the most general definition of Wannier functions, they are identical with the
maximally-localized Wannier functions calculated from first principles [25] by minimizing their total
spread [26] so long as the latter are symmetry-adapted, too. The methods complement each other,
because by group theory, we cannot provide any procedure to calculate the Wannier functions. The
present paper only examines the existence of optimally-localized symmetry-adapted Wannier functions.

The closed complexes of energy bands used in this paper, however, differ from the optimal subspaces,
as defined by Souza et al. [27]: for instance, the subspace method allows the construction of
well-localized Wannier-like functions even for the conduction bands of copper. With our methods, on
the other hand, we cannot construct optimally-localized symmetry-adapted Wannier functions close to
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the Fermi energy in copper, which are centered at the atomic positions. In other words, copper neither
possesses a magnetic nor a superconducting band with the physical consequence that copper neither is
magnetic nor superconducting. Moreover, our closed complexes of energy bands never comprise all of
the partially filled bands near the Fermi level; see, e.g., the superconducting band of niobium depicted
in Figure 1 or the numerous magnetic and superconducting bands presented in the papers cited above.
The energy bands belonging to our closed complexes are determined by the symmetry of the Bloch
functions. Nevertheless, we believe that the subspace method used by Souza et al. might be combined
with the symmetry method used in this paper.

Though we shall also define the two terms “magnetic” and “superconducting” band (Definitions 16
and 22, respectively), which are related to the nonadiabatic Heisenberg model, the presented group
theory is independent of any physical model of magnetism or superconductivity.

2. Usual (Spin-Independent) Wannier Functions

2.1. Definition

Consider a closed complex of µ energy bands in the band structure of a metal or a semiconductor.

Definition 1 (closed). A complex of energy bands is called closed if the bands are not connected by
degeneracies to bands not belonging to the complex.

Definition 2 (closed band). In the following, a closed complex of µ energy bands is referred to as a
single closed band consisting of µ branches.

The metals do not possess closed bands in their band structures. However, closed bands may
arise after the activation of a perturbation, reducing the symmetry in such a way that interfering band
degeneracies are removed. Such a reduction of the symmetry may be caused by a magnetic structure or
by a (slight) distortion of the crystal.

Hence, we assume that the Hamiltonian H of a single electron in the considered material consists of
a partHG with the unperturbed space group G and a perturbationHH with the space group H ,

H = HG +HH , (1)

where H is a subgroup of G,
H ⊂ G. (2)

In general, the considered closed energy band of µ branches was not closed before the perturbation HH

was activated.
Assume the Bloch functions ϕ~k,q(~r) (labeled by the wave vector ~k and the branch index q) as the

solutions of the Schrödinger equation of H to be completely calculated in the first domain of the
Brillouin zone.

Definition 3 (first domain). Let h be the order of the point group H0 of H . Then, the Brillouin zone is
divided by the planes of symmetry into h domains. An arbitrarily chosen domain we call the first domain.
This first domain shall comprise the bounding planes, lines and points of symmetry, too.
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As in [28], in the rest of the Brillouin zone, the Bloch functions shall be determined by the equation:

ϕα~k,q(~r) = P ({α|~tα})ϕ~k,q(~r) for α ∈ H0, (3)

where ~k lies in the first domain, and in the ~k space outside the Brillouin zone by the equation:

ϕ~k+ ~K,q(~r) = ϕ~k,q(~r). (4)

~K denotes a vector of the reciprocal lattice and H0 stands for the point group of H .

Definition 4 (symmetry operator). P (a) denotes the symmetry operator assigned to the space group
operation a = {α|~tα} consisting of a point group operation α and the associated translation ~tα, acting
on a wave function f(~r) according to:

P (a)f(~r) = f(a−1~r) = f(α−1~r − α−1~tα). (5)

The Bloch functions ϕ~k,q(~r) of the closed band under observation can be unitarily transformed into
Wannier functions:

wi(~r − ~R− ~ρi) =
1√
N

BZ∑
~k

e−i
~k(~R+~ρi)ϕ̃~k,i(~r) (6)

centered at the positions ~R + ~ρi, where the functions:

ϕ̃~k,i(~r) =

µ∑
q=1

giq(~k)ϕ~k,q(~r) (7)

are “generalized” Bloch functions [28]. The sum in Equation (6) runs over the N vectors ~k of the first
Brillouin zone (BZ); the sum in Equation (7) over the µ branches of the considered band; ~R denote the
vectors of the Bravais lattice; and the coefficients giq(~k) in Equation (7) are the elements of an unitary
matrix g(~k),

g−1(~k) = g†(~k), (8)

in order that the Wannier functions are orthonormal,∫
w∗i (~r − ~R− ~ρi)wi′(~r − ~R ′ − ~ρi′)d~r = δ~R~R′δii′ . (9)

Definition 5 (optimally-localized). The Wannier functions are called optimally-localized if the
coefficients giq(~k) may be chosen in such a way that the generalized Bloch functions ϕ̃~k,i(~r) move, for
fixed ~r, continuously through to whole ~k space [28].

As was already shown in [29], the Bloch functions ϕ~k,q(~r) as the eigenfunctions of the Hamiltonian
H may be chosen in such a way that they vary continuously as functions of ~k through the first domain
and, in particular, approach continuously the boundaries of the first domain. From Equations (3) and (4),
however, we cannot conclude that they also cross continuously the boundaries of the domains within
the Brillouin zone or at the surface of the Brillouin zone. Fortunately, this problem is solvable by
group-theoretical methods [28,30]. Theorem 5 shall define the condition for optimally-localized and
symmetry-adapted (Definition (7)) Wannier functions.
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2.2. Symmetry-Adapted Wannier Functions

In [28], we demanded that symmetry-adapted Wannier functions satisfy the equation:

wi
(
α−1(~r − ~R− ~ρi)

)
=

µ∑
j=1

Dji(α)wj(~r − ~R− ~ρi) (10)

for the elements α of the point group H0 of H , where the Dji(α) are the elements of the matrices:

D(α) =
[
Dij(α)

]
(11)

forming a representationDDD of H0, which in most cases, is reducible. (It should be noted that the sum in
Equation (10) runs over wj(~r − ~R− ~ρi) and not over wj(~r − ~R− ~ρj).)

Equation (10) defines the symmetry of Wannier functions in general terms; in particular, they may
be centered at a variety of positions ~ρi being different from the positions of the atoms. However, in the
context of superconducting and magnetic bands, we may restrict ourselves to Wannier functions centered
at the positions of the atoms.

Thus, we assume:

(i) that the positions ~ρi of the Wannier functions in Equation (6) are the positions of atoms,

(ii) that only atoms of the same sort are considered (although, of course, other atoms may exist) and

(iii) that there is one Wannier function at each atom.

Under these assumptions [15],

– the Wannier functions may be labeled by the positions of the atoms,

w~T (~r) ≡ wi(~r − ~R− ~ρi), (12)

where
~T = ~R + ~ρi, (13)

– the matrix representatives D(α) of the representationDDD in Equation (10) have one non-vanishing
element Dij(α) with:

|Dij(α)| = 1 (14)

in each row and each column and

– Equation (10) may be written in the considerably simplified form:

P (a)w~T (~r) = Dji(α)w~T ′(~r) for a ∈ H (15)

where
~T ′ = α~T + ~tα (16)

and the subscripts i and j denote the number of the atoms at position ~T and ~T ′, respectively.
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Definition 6 (number of the atom). The subscript i of the vector ~ρi in Equation (13) defines the number
of the atom at position ~T .

Definition 7 (symmetry-adapted). We call the Wannier functions symmetry-adapted to H if they satisfy
Equation (15).

Theorem 1. The third assumption (iii) shows immediately that the number µ of the branches of the band
under observation equals the number of the considered atoms in the unit cell.

Equations (15) and (16) define the non-vanishing elements, and hence, we may write Equation (14)
more precisely,

|Dji(α)| =

{
1 if α~ρi + ~tα = ~ρj + ~R

0 else,
(17)

where {α|~tα} ∈ H and ~R still denotes a lattice vector.

Definition 8 (the representation defining the Wannier functions). In what follows, the representation DDD
of H0 with the matrix representatives

D(α) = [Dij(α)]

defined by Equation (15) shall be referred to in short as “the representation defining the Wannier
functions” and its matrix representatives D(α) as “the matrices defining the Wannier functions”.

Definition 9 (unitary generalized permutation matrices). Since the matrices D(α) defining the Wannier
functions have one non-vanishing element obeying Equation (17) in each row and each column, they are
so-called unitary generalized permutation matrices.

3. Determination of the RepresentationsDDD Defining the Wannier Functions

In the following Section 4, we shall give a simple condition (Theorem 5) for optimally-localized and
symmetry-adapted Wannier functions yielding the representations of the Bloch functions at all of the
points ~k of symmetry in the Brillouin zone. However, in Theorem 5, the representations DDD defining
the Wannier functions must be known. Hence, first of all, we have to determine in this section all of
the possible representations that may define the Wannier functions. In this context, we assume first that
all of the atoms are connected by symmetry. This restricting assumption shall not be abandoned until
Section 3.4.

Definition 10 (connected by symmetry). Two atoms at positions ~ρi and ~ρj are connected by symmetry if
there exists at least one element a = {α|~tα} in the space group H satisfying the equation:

α~ρi + ~tα = ~ρj + ~R, (18)

where ~R is a lattice vector.
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3.1. General Properties of the Representatives D(α) ofDDD

First consider the diagonal elements:

di(α) = Dii(α) (19)

of the matrices D(α) defining the Wannier functions. From Equation (17), we obtain:

|di(α)| =

{
1 if α~ρi + ~tα = ~ρi + ~R

0 else
(20)

where ~R denotes a lattice vector. This equation demonstrates that the matrix D(α) has non-vanishing
diagonal elements di(α) if the space group operation a = {α|~tα} leaves invariant the position ~ρi of the
i-th atom. These space group operations form a group, namely the group G~ρi of the position ~ρi.

Definition 11 (group of position). The group G~ρi of the position ~ρi is defined by:

a ∈ G~ρi if a ∈ H and α~ρi + ~tα = ~ρi + ~R. (21)

G0~ρi denotes the point group of G~ρi .

Hence, the non-vanishing diagonal elements di(α) of the matrices D(α) form a one-dimensional
representation dddi of the point group G0~ρi of G~ρi . The Wannier functions transform according to:

P (a)w~T (~r) = di(α)w~T+~R(~r) for α ∈ G0~ρi (22)

(cf., Equation (15)) by application of a space group operator P (a) (where ~R still denotes a vector of the
Bravais lattice). From Equation (10), we may derive the equivalent equation:

wi
(
α−1(~r − ~R− ~ρi)

)
= di(α)wi(~r − ~R− ~ρi) for α ∈ G0~ρi (23)

or, after shifting the origin of the coordinate system into the center of the function wi(~r − ~R− ~ρi),

~r ′ = ~r − ~R− ~ρi,

we receive an equation:
wi(α

−1~r ′) = di(α)wi(~r
′) for α ∈ G0~ρi (24)

emphasizing the point-group symmetry of the Wannier function at position ~R + ~ρi.
In constructing the representation DDD defining the Wannier functions, we cannot arbitrarily choose

the one-dimensional representations dddi of G0~ρi , because they must be chosen in such a way that the
matrix representatives D(α) form a representation of the point group H0, i.e., they must obey the
multiplication rule:

D(αβ) = D(α)D(β) (25)

for all of the elements α and β in H0.
In what follows, we assume that all of the groups G~ρi are normal subgroups of H . In fact, in all of

the crystal structures that we examined in the past, G~ρi was a normal subgroup, be it because it was a
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subgroup of Index 2 or be it because it was the intersection of two subgroups of Index 2. Both cases are
sufficient for a normal subgroup. We believe that in all physically-relevant crystal structures, G~ρi is a
normal subgroup of H . If not, the present formalism must be extended for these structures.

When the groups G~ρi are normal subgroups of H , each of the groups G~ρi contains only complete
classes of H ,

b−1ab ∈ G~ρi if a ∈ G~ρi and b ∈ H. (26)

We now show that, as a consequence, all of the groups G~ρi contain the same space group operations.
Let b = {β|~tβ} be a space group operation of H moving ρi into ρj ,

β~ρi + ~tβ = ~ρj + ~R,

then
c = b−1ab (27)

is an element of G~ρi if a ∈ G~ρj . Equation (27) even yields all of the elements c of G~ρi when a runs throw
all of the elements of G~ρj , because we may write Equation (27) in the form:

bcb−1 = a

showing that we may determine from any element c ∈ G~ρi an element a ∈ G~ρj .
On the other hand, Equation (26) shows that c is an element of G~ρj , too. When a runs through all of

the elements of G~ρj , then also c runs through all of the elements of G~ρj . Consequently, all of the groups
G~ρi , as well as all of the related point groups G0~ρi contain the same elements.

Thus, we may omit the index i and define:

Definition 12 (group of position). The group Gp and the related point group G0p of the positions of the
atoms are defined by:

Gp ≡ G~ρi (28)

and
G0p ≡ G0~ρi , (29)

respectively, where G~ρi and G0~ρi are given by Definition 11.

3.2. Necessary condition for of the representatives D(α) ofDDD

The one-dimensional representations dddi of G0p must be chosen in such a way that the matrices D(α)

defining the Wannier functions form a representation DDD of the complete point group H0. A necessary
condition is given by the evident Theorem 2.

Theorem 2. If the matrices D(α) cannot be completely reduced into the irreducible representations of
H0, then they do not form a representation of the point group H0.

This theorem is necessary, but not sufficient: even if the matrices D(α) can be completely reduced
into the irreducible representations of H0, then they need not form a representation of the point group
H0 [31]. The complete decomposition of a reducible representation is described, e.g., in [31,32]; in
particular, see Equation (1.3.18) of [32]. Theorem 2 leads to three important cases:
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– Case (i): If all of the representations dddi are subduced from one-dimensional representations of H0,
then all of the representations dddi are equal,

dddi = ddd for all of the positions ~ρi. (30)

The representation ddd may be equal to any one-dimensional representation of G0p subduced from a
one-dimensional representation of H0.

– Case (ii): If all of the representations dddi are subduced from two-dimensional representations of
H0, then one half of the representations dddi is equal to dddA, and the other half is equal to dddB,

dddi = dddA for one half of the positions ~ρi
dddi = dddB for the remaining positions ~ρi,

(31)

where dddA and dddB are subduced from the same two-dimensional representation of H0. In special
cases, the two representations dddA and dddB may be equal; see below.

– Case (iii): “Mixed” representations DDD consisting of both representations dddi subduced from one-
and two-dimensional representations of H0 do not exist.

A further case that the representations dddi are subduced from three-dimensional representations of H0

may occur in crystals of high symmetry, but is not considered in this paper.
These results, (i)–(iii), follow from the very fact that Equation (15) describes an interchange of the

Wannier functions at different positions ~ρi. Such an interchange, however, does not alter the symmetry
of the Wannier functions.

3.3. Sufficient Condition for of the Representatives D(α) ofDDD

For α ∈ G0p the matrices D(α) defining the Wannier functions are diagonal, while the remaining
matrices D(α) (for α ∈ H0 − G0p) do not possess any diagonal element. Theorem 2 only gives
information about the diagonal matrices D(α). Hence, this theorem indeed cannot be sufficient, because
we do not know whether or not the remaining matrices obey the multiplication rule (25).

In this section, we assume that the matrices D(α) already satisfy Theorem 2 and examine the
conditions under which they actually form a (generally reducible) representation of H0. In doing so,
we consider separately the two cases, (i) and (ii), of the preceding Section 3.2.

3.3.1. Case (i) of Section 3.2

No further problems arises when Case (i) of Section 3.2 is realized. In this case, Theorem 2 is
necessary and sufficient. To justify this assertion, we write down explicitly the non-diagonal elements of
the matrices D(α).

Let δδδ be any one-dimensional representation of H0 subducing the representation ddd in Equation (30).
If we put all of the non-vanishing elements of the matrices D(α) equal to the elements δ(α) of δδδ,

Dji(α) =

{
δ(α) if α~ρi + ~tα = ~ρj + ~R

0 else,
(32)
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then we receive matrices D(α) evidently multiplying as the elements of the representation δδδ and,
consequently, obeying the multiplication rule in Equation (25).

3.3.2. Case (ii) of Section 3.2

The situation is a little more complicated when Case (ii) of Section 3.2 is realized. Now, the
representations dddA and dddB in Equation (31) may be distributed across the positions ~ρi in such a way that
the matrices D(α) form a representation of H0 or do not. Though we always find a special distribution
of the dddA and dddB yielding matrices D(α) actually forming a representation of H0, we have to rule out
those distributions not leading to a representation ofH0, because in the following (in Equations (38), (66)
and (111)), we need the matrices D(α) explicitly.

Let ∆∆∆ be (with the matrix representatives ∆∆∆(α)) a two-dimensional representation of H0 subducing
the two representations dddA and dddB of G0p. The matrix representatives ∆∆∆(α) may be determined, e.g.,
from Table 5.1 of [32].

As a first step, ∆∆∆ must be unitarily transformed (by a matrix Q) in such a way that the matrices ∆∆∆(α)

are diagonal for α ∈ G0p,

∆∆∆(α) = Q−1∆∆∆(α)Q = diagonal for α ∈ G0p. (33)

Now, consider a certain distribution of the representations dddA and dddB across the positions ~ρi. Then,
we may determine the elements of the matrices D(α), if they exist, be means of the formula:

if α~ρi + ~tα = ~ρj + ~R

Dji(α) =



∆12(α) if dddj = dddA and dddi = dddB,

∆21(α) if dddj = dddB and dddi = dddA,

∆11(α) if dddj = dddA and dddi = dddA,

∆22(α) if dddj = dddB and dddi = dddB,

else

Dji(α) = 0,

(34)

where the ∆ij(α) denote the elements of ∆∆∆(α).
It turns out that in each case, the matrices determined by Equation (34) satisfy the multiplication rule

in Equation (25) if Equation (34) produces for each space group operation a ∈ H a unitary generalized
permutation matrix D(α). This may be understood because Equation (34) defines the complex numbers
Dji(α) in such a way that the Wannier functions transform in Equation (15) in an unequivocal manner
like the basis functions for ∆∆∆. With “like” the basis functions, we want to express that by application of
any space group operator P ({α|~tα}), they are multiplied in Equation (15) by the same complex number
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∆ij(α) as the basis functions for ∆∆∆. The Wannier functions would indeed be basis functions for ∆∆∆ if
they would not be moved from one position ~ρi to another by some space group operations. Hence, we
may expect that the matrices D(α) satisfy the multiplication rule in Equation (25) just as the matrices
∆∆∆(α) do. Nevertheless, the multiplication rule should be verified numerically in any case.

When using this Equation (34), a little complication arises if the group of position G0p contains so
few elements that the two one-dimensional representations dddA and dddB subduced from ∆∆∆ are equal. Thus,
in this case, we have no problem with the distribution of dddA and dddB across the positions ~ρi. Theorem 2
is necessary and sufficient, and we may directly solve Equation (38) of Theorem 5.

However, when in Section 6 or in Section 7.3 we will consider magnetic groups, we need all of the
representatives D(α) of the representation DDD explicitly. Fortunately, also when the representations dddA
and dddB are equal, Equation (34) is applicable: in this case, their exists at least one diagonal matrix
representative ∆∆∆(γ) of ∆∆∆ with vanishing trace and γ /∈ G0p. We may define pairs:

(~ρa, ~ρb), (~ρc, ~ρd), . . . (35)

of positions ρi where the positions in each pair are connected by the space group operation {γ|~tγ}. In
the simplest case, we receive two pairs. Then, in Equation (34), we may identify the two representations
at ~ρa and ~ρb by dddA and the representations at the other two positions ~ρc and ~ρd by dddB. If we find four
pairs of positions, we may look for a second matrix representative ∆∆∆(γ′) in ∆∆∆ with vanishing trace and
γ′ /∈ G0p. Then, we may repeat the above procedure and receive again four pairs of positions. Now, we
associate the two representations dddA and dddB to the positions ~ρi under the provision that positions of the
same pair are always associated with the same representation dddA or dddB.

Finally, it should be mentioned that the elements of the non-diagonal matrices D(α) are not fully fixed
(as already remarked in [30]): In Equation (32), we may use the elements δ(α) of any one-dimensional
representation δδδ subducing the representation ddd. We receive in each case the same diagonal, but
different non-diagonal matrices nevertheless satisfying the multiplication rule (25). Analogously, in
Equation (34), we may determine the matrices D(α) by means of any two-dimensional representation ∆∆∆

subducing dddA and dddB.
In the following Theorem 3, we summarize our results in the present Section 3.3.

Theorem 3. The Wannier functionwi(~r− ~R−~ρi) at the position ~ρi is basis function for a one-dimensional
representation dddi of the “point group of position” G0p ⊂ H0 (Definition 12); cf. Equation (24). The
representations dddi fix the (generally reducible) representation DDD of H0 defining the Wannier functions
(Definition 8). The matrix representatives D(α) ofDDD are unitary generalized permutation matrices. We
distinguish between two cases, (i) and (ii).

Case (i): If the representations dddi are subduced from one-dimensional representations of the point
group H0, then all of the Wannier functions of the band under observation are basis functions for
the same representation ddd, which may be any one-dimensional representation of G0p subduced from
a one-dimensional representation of H0. The representation DDD exists always; its matrix representatives
D(α) may be calculated by Equation (32).

Case (ii): If the representations dddi are subduced from two-dimensional representations of the point
groupH0, then the Wannier functions are basis functions for the two one-dimensional representations dddA
and dddB of G0p subduced from the same two-dimensional representation of H0. One half of the Wannier
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functions is the basis function for dddA and the other half for dddB. In special cases, the representations
dddA and dddB may be equal; see above. The representation DDD exists for a given distribution of the
representations dddA and dddB across the positions ~ρi if Equation (34) yields unitary generalized permutation
matrices D(α) satisfying the multiplication rule in Equation (25).

A third case with representations dddi subduced from one-dimensional, as well as from two-dimensional
representations of H0 does not exist.

3.4. Not All of the Atoms Are Connected by Symmetry

If not all of the atoms at the positions ~ρi are connected by symmetry (Definition 10), the
representationDDD defining the Wannier functions consists of representatives D(α), which may be written
in block-diagonal form:

D(α) =



 block 1

 0 · · ·

0

 block 2

 · · ·

...
...


, (36)

where each block comprises the matrix elements Dij(α) belonging to positions connected by symmetry.
Otherwise, when the matrices D(α) would not possess the block-diagonal form, Equation (10) would
falsely connect atomic positions that are not at all connected by symmetry. As a consequence of the
block-diagonal form, the representation DDD is the direct sum over representations DDDq related to the
individual blocks,

DDD = DDD1 ⊕DDD2 ⊕ . . .
=

∑
q

DDDq. (37)

We may summarize as follows.

Theorem 4. Each blockDDDq in Equation (37) forms its own representation ofH0 and, hence, must comply
separately and independently with the criteria given in Theorem 3.

The groups of positionGp belonging to different blocks may (but need not) be different. However, we
assume that the sum in Equation (37) consists only of blocks with coinciding groups of position. If this
is not true in special cases, the number µ of the atoms in Equation (7) must be reduced until the groups
of position coincide in the sum in Equation (37). Briefly speaking, in such a (probably rare) case, atoms
of the same sort must be treated like different atoms.
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4. Condition for Optimally-Localized Symmetry-Adapted Wannier Functions

Remember that we consider a closed energy band of µ branches and let a representation DDD defining
the Wannier functions be given, which was determined according to Theorems 3 and 4. Then, we may
give a simple condition for optimally-localized symmetry-adapted Wannier functions based on the theory
of Wannier functions published in [28,30].

Theorem 5. Let ~k be a point of symmetry in the first domain of the Brillouin zone for the considered
material, and let H~k ⊂ H be the little group of ~k in Herrings sense. That means, H~k is the finite group
denoted in [32] by HG

~k (and listed for all of the space groups in Table 5.7 ibidem). Furthermore, letDDD~k

be the µ-dimensional representation of H~k whose basis functions are the µ Bloch functions ϕ~k,q(~r) with
wave vector ~k and χ~k(a) (with a ∈ H~k) the character of DDD~k. DDD~k either is irreducible or the direct sum
over small irreducible representations of H~k.

We may choose the coefficients giq(~k) in Equation (7) in such a way that the Wannier functions are
optimally-localized (Definition 1) and symmetry-adapted to H (Definition 7) if the character χ~k(a) of
DDD~k satisfies at each point ~k of symmetry in the first domain of the Brillouin zone the equation:

χ~k(a) = e−iα
~k·~tα

µ∑
i=1

ni(a)e−i~ρi·(
~k−α~k) for a ∈ H~k, (38)

where a = {α|~tα} and:

ni(a) =

{
di(α) if α ∈ G0p

0 else.
(39)

The complex numbers di(α) stand for the elements of the one-dimensional representations dddi of G0p

fixing the given µ-dimensional representationDDD defining the Wanner functions.

Definition 13 (point of symmetry). The term point of symmetry we use as defined in [32]: ~k is a point
of symmetry if there exists a neighborhood of ~k in which no point except ~k has the symmetry group H~k.

Thus, a point ~k of symmetry has a higher symmetry than all surrounding points.

We add a few comments on Theorem 5.

– In Equation (39), we write ni(a), rather than ni(α), because the groupG0p depends on a = {α|~tα}.

– The representationDDD defining the Wannier functions is equivalent to the representationDDD~0, i.e., to
the representationDDD~k for ~k = ~0; see Equation (50).

– In the majority of cases, all of the representations dddi in Equation (39) are equal. The only
exceptions arises when:

(i) not all of the positions ~ρi are connected by symmetry or

(ii) the one-dimensional representations dddi of G0p are subduced from a higher-dimensional
representation of H0.

– a basic form of Theorem 5 was published first in Equation (23) of [7] and used in several former
papers; Equation (23) of [7] yields the same results as Theorem 5
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(i) if all of the ~ρi are connected by symmetry and

(ii) if all of the representations dddi of G0p are subduced from one-dimensional representations of
H0.

These two conditions were satisfied in our former papers.

– The irreducible representations of the Bloch functions of the considered band at the points ~k of
symmetry may be determined from the representationsDDD~k as follows:

Theorem 6. Let H~k possess r irreducible representations with the characters χ~k,m(a) (1 ≤ m ≤ r),
and assume that DDD~k contains the m-th irreducible representation, say, cm times. Then, the numbers cm
may be calculated by means of Equation (1.3.18) of [32],

cm =
1

|H~k|

H~k∑
a

χ~k,m(a)χ∗~k(a), (40)

where χ~k(a) denotes the character ofDDD~k as determined by Equation (38) and the sum runs over the |H~k|
elements a of H~k. Remember (Theorem 5) that H~k is a finite group.

5. Proof of Theorem 5

The existence of the optimally-localized symmetry-adapted Wannier functions is defined in Satz 4
of [28]: such Wannier functions exist in a given closed energy band of µ branches if Equations (4.28)
and (4.17) of [28] are satisfied. We show in this section that the fundamental Theorem 5 complies with
these two equations if the Wannier functions meet Assumptions (i)–(iii) in Section 2.2.

5.1. Equation (4.28) of [28]

As the first step, consider Equation (4.28) of [28] stating that optimally-localized and
symmetry-adapted Wannier functions may exist only if two representations D̂DD~k′ΣR

and DDD~k′ΣR
are

equivalent,
D̂DD~k equivalent toDDD~k, (41)

where we have abbreviated ~k′ΣR by ~k denoting a point of symmetry lying in the first domain of the
Brillouin zone. Consequently, our first task will be to determine the character of D̂DD~k, as well as ofDDD~k,

The representation DDD~k as defined in Theorem 5 is the direct sum of the representations of the Bloch
functions of the considered band at point ~k. The character χ~k(a) of the representation DDD~k is simply
given by:

χ~k(a) = trace D~k(a) (42)

where the matrices D~k(a) are the matrix representatives ofDDD~k.
The matrix representatives D̂~k(a) of D̂DD~k are defined in Equation (4.26) of [28],

D̂~k(a) = S∗( ~Kα)D~0(α)e−iα
~k~tα (43)

where
~Kα = ~k − α~k (44)
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is a vector of the reciprocal lattice. Again, we have abbreviated ~k′SR by ~k denoting a point of symmetry.
The matrices S( ~K) as defined in Equation (4.13) of [28] are responsible for a continuous transition of the
generalized Bloch functions between neighboring Brillouin zones. The matrices D~0(α) are the matrix
representatives of the representation DDD~k for ~k = ~0 as defined in Theorem 5. DDD~0 is the direct sum of the
irreducible representations of the Bloch functions of the considered band at point Γ.

The traces of the matrices D̂~k(a) can be determined by transforming Equation (43) with the complex
conjugate of the matrix M defined by Equation (2.1) of [30],

M∗D̂~k(a)M∗−1 = M∗S∗( ~Kα)M∗−1 ×
M∗D~0(α)M∗−1 × (45)

e−iα
~k·tα ,

where a = {α|~tα} still denotes an element of the space group H . By definition, the matrix M

diagonalizes the matrices S( ~K), which is possible, since all of the S( ~K) commute. Thus, the first
factor M∗S∗( ~Kα)M∗−1 in Equation (45) is the diagonal matrix:

S
∗
( ~Kα) = e−i

~Kα·T, (46)

where, according to Equation (2.7) of [30], also T is a diagonal matrix with:

~T ii = ~ρi. (47)

Hence, the first factor in Equation (45) may be written as:

M∗S∗( ~Kα)M∗−1 = S
∗
( ~Kα) =


e−i~ρµ·(

~k−α~k) . . . 0 0

0
. . . 0 0

0 . . . e−i~ρ2·(~k−α~k) 0

0 . . . 0 e−i~ρ1·(~k−α~k)

 .
(48)

Definition 14 (horizontal bar). In line with [30], we denote matrices transformed with M (or M∗) by a
horizontal bar to indicate that these matrices belong to the diagonal matrices S( ~K).

As shown in [30] (see Equations (2.18) and (2.19) of [30]), the second factor:

D~0(α) = M∗D~0(α)M∗−1 (49)

in Equation (45) is a matrix representative D(α) of the representationDDD defining the Wannier functions,

D~0(α) = D(α). (50)

Thus, the matrices:

D̂~k(a) = M∗D̂~k(a)M∗−1

= S
∗
( ~Kα)D(α)e−iα

~k·~tα (51)
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are the matrix representatives of a representation D̂DD~k equivalent to D̂DD~k.

The character of D̂DD~k may be easily determined: the diagonal elements di(α) of the matrices D(α)

are fixed by Theorems 3 and 4. Since the matrix S
∗
( ~Kα) is diagonal, the diagonal elements d̂i(a) of the

matrices D̂~k(a) may be written as:

d̂i(a) = e−iα
~k·~tαdi(α)e−i~ρi·(

~k−α~k) for a ∈ H~k, (52)

where still a = {α|~tα}. The diagonal elements di(α) of the matrices D(α) vanish if α /∈ G0p; see
Equation (20). Hence, the term on the right-hand side of Equation (38) is the sum over the diagonal
elements d̂i(a), i.e., it is the trace of the matrices D̂~k(a). Consequently, if Equation (38) is satisfied, then
Condition (41) is true.

Strictly speaking, in [28], we have proven that the condition (41) must be satisfied for the points of
symmetry lying in the first domain on the surface of the Brillouin zone. Equation (38) demands that
in addition, the representation DDD~0 is equivalent to the representation DDD, which is evidently true; see
Equation (50).

5.2. Equation (4.17) of [28]

As the second step, we show that Equation (4.17) of [28] does not reduce the validity of Theorem 5,
but this equation is satisfied whenever Assumptions (i)–(iii) in Section 2.2 are valid. Taking the complex
conjugate of Equation (4.17) of [28] and transforming this equation with the matrix M∗ already used in
Equation (45), we receive the equation:

S
∗
(α ~K) = D(α)S

∗
( ~K)D−1(α)e−iα

~K·~tα , (53)

cf. Equations (48) and (50), which must be satisfied for all a = {α|~tα} ∈ H and all of the vectors ~K of
the reciprocal lattice.

Just as the matrix:

S
∗
( ~K) =


e−i~ρµ·

~K . . . 0 0

0
. . . 0 0

0 . . . e−i~ρ2· ~K 0

0 . . . 0 e−i~ρ1· ~K

 , (54)

also the matrix D(α)S
∗
( ~K)D−1(α) in Equation (53) is diagonal with the same diagonal elements, which,

however, may stand in a new order. In fact, if Dji(α) 6= 0, the element e−i~ρi· ~K of S
∗
( ~K) at position i

stands at position j in the matrix D(α)S
∗
( ~K)D−1(α). Thus, from Equation (53), we receive the µ

equations:
e−iα

~K·~ρj = e−i
~K·~ρi · e−iα ~K·~tα if Dji(α) 6= 0, (55)

yielding µ equations for the positions ~ρi,

~ρj = α~ρi + ~tα + ~Rj if Dji(α) 6= 0, (56)

where ~Rj is a lattice vector, which may be different in each equation. In fact, these last µ equations (56)
are satisfied; see Equation (17).



Symmetry 2015, 7 578

6. Magnetic Groups

Assume a magnetic structure to be given in the considered material„ and let:

M = H +K{γ|~τ}H (57)

be the magnetic group of this magnetic structure, where:

{γ|~τ} ∈ G (58)

and K denotes the operator of time inversion acting on a function f(~r) of position according to:

Kf(~r) = f ∗(~r). (59)

We demand that the equation:

Kwi
(
γ−1(~r − ~R− ~ρi)

)
=

µ∑
j=1

Njiwj(~r − ~R− ~ρi) (60)

is satisfied in addition to Equation (10), where the matrix N = [Nij] is the representative of the
anti-unitary symmetry operation Kγ in the co-representation of the point group:

M0 = H0 +KγH0 (61)

of M derived from [32] the representationDDD of H0 defining the Wannier functions.
Still, we assume that there is exactly one Wannier function at each position ~ρi, i.e., the three

assumptions, (i)–(iii), of Section 2.2 remain valid. Thus, [15], Equation (60) may be written in the
more compact form:

KP ({γ|~τ})w~T (~r) = Njiw~T ′(~r) (62)

with:
~T ′ = γ ~T + ~τ (63)

and the subscripts i and j denote the number of the atoms at position ~T and ~T ′, respectively; see
Definition 6.

Definition 15 (symmetry-adapted to a magnetic group). We call the Wannier functions
symmetry-adapted to the magnetic group M if, in addition to Equation (15), Equation (62) is satisfied.

Again (cf. Section 2.2), Equation (62) defines the non-vanishing elements of the matrix N. Hence,
also, N has one non-vanishing element in each row and each column,

|Nji| =

{
1 if γ~ρi + ~τ = ~ρj + ~R

0 else.
(64)

As already expressed by Equation (60), we only consider bands of µ branches, which are not
connected to other bands, also after the introduction of the new anti-unitary operation K{γ|~τ}. That
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means that the considered band consists of µ branches, as well, after, as before the introduction of
K{γ|~τ}. Hence, the matrix N must satisfy the equations:

NN∗ = D(γ2) (65)

and
D(α) = ND∗(γ−1αγ)N−1 for α ∈ H0, (66)

see Equation (7.3.45) of [32]. Still, the matrices D(α) are the representatives of the representation
DDD of H0 defining the Wannier functions. In [32], Equation (7.3.45) was established for irreducible
representations. However, this, proven in Section 7.3 ibidem, shows that Equation (7.3.45) holds for
reducible representations, too, if Equation (65) is satisfied.

Assume Theorem 5 to be satisfied in the considered energy band and remember that then, the
coefficients giq(~k) in Equation (7) can be chosen in such a way that the Wannier functions of this band
are optimally-localized and symmetry-adapted to H . In [33], we have shown that the Wannier functions
may even be chosen symmetry-adapted to the magnetic group M if Equation (7.1) of [33],

S(−γ ~K) = D∗~0(Kγ)S∗( ~K)D∗−1
~0

(Kγ)e−iγ
~K·~τ , (67)

is valid for each vector ~K of the reciprocal lattice (which should not be confused with the operator K
of time inversion). The matrix S( ~K) is defined in Equation (4.13) of [28], and the matrix D~0(Kγ)

is the representative of the symmetry operation Kγ in the co-representation of M0 derived from the
representationDDD~0, i.e., from the representationDDD~k for ~k = ~0, as introduced in Theorem 5.

Transforming Equation (67) with the matrix M∗ already used in Equation (45) and using:

N = M∗D~0(Kγ)M−1 (Equation (11.29) of [33])
S( ~K) = MS( ~K)M−1 = diagonal, Equation (54)

S
∗
(γ ~K) = S(−γ ~K) (see Equation (54))

(68)

we receive an equation:
S
∗
(γ ~K) = N∗S

∗
( ~K)N∗−1e−iγ

~K·~τ (69)

identical to Equation (53) when we replace the space group operation {α|~tα} by {γ|~τ} and D(α) by N∗.
In Section 5.2, we have shown that Equation (53) is satisfied if the matrices D(α) follow Equation (17).
In the same way, Equation (69) is true if the elements of N (as well as of N∗) obey Equation (64). Thus,
Equations (64)–(66) are the only additional conditions for the existence of optimally-localized Wannier
functions that are symmetry-adapted to the magnetic group M .

We summarize the results of the present Section 6 in:

Theorem 7. The coefficients giq(~k) in Equations (7) may be chosen in such a way that the Wannier
functions are optimally-localized (Definition 5) and even symmetry-adapted to the magnetic group M in
Equation (57) (Definition 15) if, according to Theorem 5, they may be chosen symmetry-adapted to H
and if, in addition, there exists a µ-dimensional matrix N satisfying Equations (64)–(66).

The representationDDD in Equations (65) and (66) is the representation defining the Wannier functions
as used in Theorem 5.

In most cases, we may set the non-vanishing elements of N equal to one.
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Definition 16 (magnetic band). If, according to Theorem 7, the unitary transformation in Equation (6)
may be chosen in such a way that the Wannier functions are optimally-localized and symmetry-adapted
to the magnetic group M in Equation (57), we call the band under consideration (as defined by the
representationsDDD~k in Equation (38)) a “magnetic band related to the magnetic group M”.

Within the nonadiabatic Heisenberg model, the existence of a narrow, roughly half-filled magnetic
band in the band structure of a material is a precondition for the stability of a magnetic structure with
the magnetic group M in this material. However, the magnetic group M must be “allowed” in order
that the time-inversion symmetry does not interfere with the stability of the magnetic state [10].

7. Spin-Dependent Wannier Functions

7.1. Definition

Assume the HamiltonianH of a single electron in the considered material to be given, and assumeH
to consist of a spin-independent partHi and a spin-dependent perturbationHs,

H = Hi +Hs. (70)

Further, assume the Bloch spinors ψ~k,q,s(~r, t) as the exact solutions of the Schrödinger equation:

Hψ~k,q,s(~r, t) = E~k,q,sψ~k,q,s(~r, t) (71)

to be completely determined in the first domain of the Brillouin zone. Just as the Bloch functions, they
are labeled by the wave vector ~k and the branch index q. In addition, they depend on the spin coordinate
t = ±1

2
and are labeled by the spin quantum number s = ±1

2
.

Consider again a closed energy band of µ branches that, in general, was not closed before the
perturbation Hs was activated. Now, each branch is doubled, which means that it consists of two bands
related to the two different spin directions. Just as in Section 2.1, we assume that the Bloch spinors
ψ~k,q,s(~r, t) are chosen in such a way that they vary continuously through the first domain and approach
continuously the boundaries of the first domain. In the rest of the Brillouin zone and in the remaining ~k
space, they shall be given again by Equations (3) and (4) [33], where, however, P (a) acts now on both ~r
and t; see Equation (85).

We define “spin-dependent Wannier functions” by replacing the Bloch functions ϕ~k,q(~r) in
Equation (7) by linear combinations:

ϕ~k,q,m(~r, t) =

+ 1
2∑

s=− 1
2

fms(q,~k)ψ~k,q,s(~r, t) (72)

of the given Bloch spinors. Thus, Equation (7) becomes:

ϕ̃~k,i,m(~r, t) =

µ∑
q=1

giq(~k)ϕ~k,q,m(~r, t) (73)

and finally, the spin-dependent Wannier functions my be written as:

wi,m(~r − ~R− ~ρi, t) =
1√
N

BZ∑
~k

e−i
~k(~R+~ρi)ϕ̃~k,i,m(~r, t). (74)
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Furthermore, the spin-dependent Wannier functions depend on t and are labeled by a new quantum
number m = ±1

2
, which, in the framework of the nonadiabatic Heisenberg model, is interpreted as the

quantum number of the “crystal spin” [15,34,35]. The sum in Equation (73) runs over the µ branches
of the given closed energy band, where µ still is equal to the number of the considered atoms in the
unit cell.

The matrices:
g(~k) = [giq(~k)] (75)

still are unitary (see Equation (8)), and also, the coefficients fms(q,~k) in Equation (72) form for each ~k
and q a two-dimensional matrix:

f(q,~k) = [fms(q,~k)] (76)

which is unitary,
f−1(q,~k) = f †(q,~k), (77)

in order that the spin-dependent Wannier functions are orthonormal,

+ 1
2∑

t=− 1
2

∫
w∗i,m(~r − ~R− ~ρi, t)wi′,m′(~r − ~R ′ − ~ρi′ , t)d~r

= δ~R~R′δii′δmm′ .

(78)

Within the nonadiabatic Heisenberg model, we strictly consider the limiting case of vanishing
spin-orbit coupling,

Hs → 0, (79)

by approximating the Bloch spinors ψ~k,q,s(~r, t) by means of the spin-independent Bloch functions
ϕ~k,q(~r). In this context, we should distinguish between two kinds of Bloch states ϕ~k,q(~r) in the
considered closed band:

(i) If ϕ~k,q(~r):

– was the basis function for a non-degenerate representation already before the spin-dependent
perturbationHs was activated or

– was the basis function for a degenerate representation before Hs was activated and this
degeneracy is not removed byHs (see Section 7.4.2),

then we may approximate the Bloch spinors by:

ψ~k,q,s(~r, t) = us(t)ϕ~k,q(~r) (80)

where the functions us(t) denote Pauli’s spin functions:

us(t) = δst, (81)

with the spin quantum number s = ±1
2

and the spin coordinate t = ±1
2
. Equation (80) applies to

the vast majority of points ~k in the Brillouin zone.
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(ii) If, at a special point ~k, the Bloch function ϕ~k,q(~r) were the basis function for a degenerate
single-valued representation before the perturbation Hs was activated and if this degeneracy
were removed by Hs, then Equation (80) is unusable for the sole reason that we do not know
which of the basis functions of the degenerate representation we should avail ourselves of
in this equation. In fact, in this case, the Bloch spinors ψ~k,q,s(~r, t) are well-defined linear
combinations of the functions us(t)ϕ~k,q(~r) comprising all of the basis functions ϕ~k,q(~r) of the
degenerate single-valued representation (as given, e.g., in Table 6.12 of [32]). These specific
linear combinations are not, considered because, at this stage, they are of no importance within the
nonadiabatic Heisenberg model.

In the framework of the approximation defined by Equation (80), the two functions ϕ~k,q,m(~r, t) in
Equation (72) (with m = ±1

2
) are usual Bloch functions with the spins lying in the ±z direction if:

fms(q,~k) = δms. (82)

Otherwise, if the coefficients fms(q,~k) cannot be chosen independent of ~k, the spin-dependent Wannier
functions cannot be written as a product of a local function with the spin function us(t), even if the
approximation defined by Equation (80) is valid. Consequently, even in the limit of vanishing spin-orbit
coupling, the spin-dependent Wannier functions are neither orthonormal in the local space L nor in the
spin space S, but in L × S only; see Equation (78). Thus, also in the case

Hs → 0,

spin-dependent Wannier functions clearly differ from the usual Wannier functions characterized by

Hs = 0.

Ansatz (74) presents the most general definition of Wannier functions. While their localization
can be understood only in terms of the exact solutions of the Schrödinger equation (71), the
limiting case of vanishing spin-orbit coupling characterized by Equation (80) yields fundamental
properties of these Wannier functions, leading finally to an understanding of the material properties
of superconductors [16,35,36].

7.2. Symmetry-Adapted Spin-Dependent Wannier Functions

We demand that symmetry-adapted spin-dependent Wannier functions satisfy, in analogy to
Equation (15), the equation:

P (a)w~T ,m(~r, t) = Dji(α)

1
2∑

m′=− 1
2

dm′m(α)w~T ′,m′(~r, t) (83)

for a ∈ H since, still, Assumptions (i)–(iii) of Section 2.2 are valid. Merely the third assumption (iii)
is modified: now, the two Wannier functions w~T ,+ 1

2
(~r, t) and w~T ,− 1

2
(~r, t) are situated at the same atom,

and consequently, we now put:

w~T ,m(~r, t) ≡ wi,m(~r − ~R− ~ρi, t), (84)
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where m = ±1
2
.

The vectors ~T and ~T ′ are still given by Equations (13) and (16), respectively. The matrices D(α) =

[Dij(α)] in Equation (83) are again unitary generalized permutation matrices, and the subscripts i and j
denote the number of the atoms at position ~T and ~T ′, respectively; see Definition 6.

The operators P (a) now act additionally on the spin coordinate t of a function f(~r, t),

P (a)f(~r, t) = f(α−1~r − α−1~tα, α
−1t), (85)

where the effect of a point group operation on the spin coordinate t of the spin function us(t) is given by
the equation [32]:

us(α
−1t) =

∑
s′

ds′s(α)us′(t) for α ∈ Hd
0 . (86)

The matrix
d1/2(α) = [dss′(α)] (87)

denotes the representative of α in the two-dimensional double-valued representation ddd1/2 of O(3), as
listed, e.g., in Table 6.1 of [32].

We have to take into consideration that the double-valued representations of a group g are not
really representations of g, but of the abstract “double group” gd of order 2|g|, while the single-valued
representations are representations of both g and gd [32].

Definition 17 (double-valued). Though we use the familiar expression “double-valued” representation
of a group g, we consider the double-valued representations as ordinary single-valued representations
of the related abstract double group gd, denoted by a superscript “d”.

Since the index m of the spin-dependent Wannier functions is interpreted as spin quantum number,
we demand that the term:

1
2∑

m′=− 1
2

dm′m(α)w~T ′,m′(~r, t)

in Equation (83) describes a rotation or reflection of the crystal spin. Thus, we demand that also the
matrices [dmm′(α)] are the representatives of the two-dimensional double-valued representation ddd1/2,

[dmm′(α)] = d1/2(α) for α ∈ Hd
0 . (88)

Definition 18 (symmetry-adapted). We call the spin-dependent Wannier functions “symmetry-adapted
to the double group Hd related to space group H” if they satisfy Equation (83) for a ∈ Hd, where
the matrices [dmm′(α)] are the representatives of the two-dimensional double-valued representation ddd1/2

of O(3).

Consequently, symmetry-adapted spin-dependent Wannier functions are basis functions for the
double-valued representation:

DDDd = DDD ⊗ ddd1/2 (89)

of Hd
0 which is the inner Kronecker product of the single-valued representation DDD defined

by Equation (83) and the double-valued representation ddd1/2. Thus, the 2µ-dimensional matrix
representatives Dd(α) ofDDDd may be written as Kronecker products,

Dd(α) = D(α)× d1/2(α). (90)
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Definition 19 (representation defining spin-dependent Wannier functions). The single-valued
representation DDD of H0 defined by Equation (83) shall be referred to in short as “the representation
defining the spin-dependent Wannier functions” and its matrix: representatives

D(α) = [Dij(α)]

as “the matrices defining the spin-dependent Wannier functions”.
While usual (spin-independent) Wannier functions are basis functions for the representation

DDD defining the Wannier functions, spin-dependent Wannier functions are basis functions for the
double-valued representation:

DDDd = DDD ⊗ ddd1/2

in Equation (89).

Furthermore, the representation DDD defining the spin-dependent Wannier functions has to meet the
conditions given in Section 3, as shall be summarized in:

Theorem 8. The two spin-dependent Wannier function wi, 1
2
(~r − ~R − ~ρi, t) and wi,− 1

2
(~r − ~R − ~ρi, t) at

the position ~ρi are basis functions for the two-dimensional representation:

ddddi = dddi ⊗ ddd1/2 (91)

of the double group Gd
0p related to the point group of position G0p. The one-dimensional representations

dddi in Equation (91) fix the (generally reducible) representation DDD of H0 defining the spin-dependent
Wannier functions (Definition 19). The matrix representatives D(α) of DDD still are unitary generalized
permutation matrices, which must be chosen in such a way that they form a representation of H0. We
again distinguish between the two cases, (i) and (ii), defined in Theorem 3.

In addition, Theorem 4 must be noted.

Theorem 5 does not distinguish between usual and spin-dependent Wannier functions, but uses only
the special representations of the Bloch functions or Bloch spinors, respectively, at the points ~k of
symmetry. Thus, Theorem 5 applies to both usual and spin-dependent Wannier functions, if in the
case of spin-dependent Wannier functions, we replace the little groups H~k by the double groups Hd

~k
. Just

as the groups H~k, the groups Hd
~k

are finite groups in Herrings sense, as denoted in [32] by HG†
~k, and,

fortunately, are explicitly given in Table 6.13 ibidem.
When we consider single-valued representations, then the sum on the right-hand side of Equation (38)

runs over the µ diagonal elements d̂i(a) of the matrices D̂~k(a) in Equation (51). When we consider
double-valued representations, on the other hand, this sum runs over 2µ diagonal elements d̂di,m(a) of the
corresponding matrices:

D̂
d

~k(a) = S
d∗

( ~Kα)Dd(α)e−iα
~k·tα (92)

where

S
d∗

( ~Kα) = S
∗
( ~Kα)×

(
1 0

0 1

)
(93)

(where S
∗
( ~Kα) is given in Equation (48)) because also S

d∗
( ~Kα) is diagonal, and now, there are two

Wannier functions wi,m(~r − ~R− ~ρi, t) with m = ±1
2

at each position ~ρi.
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We need not to solve Equation (38) directly, but we may determine the representationsDDDd
~k

complying

with Equation (38) in a quicker way. Equation (93) shows that we may write the matrices D̂
d

~k(a) simply
as Kronecker products,

D̂
d

~k(a) = D̂~k(a)× d1/2(α), (94)

where D̂~k(a) is given in Equation (51).
Now, assume that we have already determined according to Theorem 5 the single-valued

representations DDDaff
~k

in the closed band under consideration. Then, the representations D̂DD~k and DDDaff
~k

are equivalent (see Equation (41)), and consequently, also the representations:

D̂DD
d

~k = D̂DD~k ⊗ ddd1/2 (95)

and
DDDd
~k

= DDDaff
~k
⊗ ddd1/2 (96)

are equivalent. Hence (Section 5.1), the double-valued representations DDDd
~k

comply with Theorem 5 in
the same way as the single-valued representationsDDDaff

~k
do.

Definition 20 (affiliated single-valued band). In this context, we call the band defined by the
double-valued representations DDDd

~k
in Equation (96) the “double-valued band” and the band defined

by the single-valued representationsDDDaff
~k

an “affiliated single-valued band”.
While a double-valued band may possess several affiliated single-valued bands, any single-valued

band is affiliated with exactly one double-valued band.
The affiliated single-valued band is a closed band that, generally, does not exist in the band structure

of the considered material. That means that the Bloch functions ϕ~k,q(~r) of the closed band under
consideration band generally do not form a basis for the representations DDDaff

~k
, even if Equation (80)

is valid; see, e.g., the single-valued band affiliated with the superconducting band (Definition 22) of
niobium as given in Equation (150).

We may summarize the result of this section in:

Theorem 9. Remember that we consider a closed energy band of µ branches, and let a representationDDD
be given defining the spin-dependent Wannier functions, which was determined according to Theorem 8.
The band may only be closed after the spin-dependent perturbationHs was activated.

Let ~k be a point of symmetry in the first domain of the Brillouin zone for the considered material,
and let Hd

~k
be the little double group of ~k in Herrings sense. That means, Hd

~k
is the finite group denoted

in [32] by HG†
~k and explicitly given in Table 6.13 ibidem. Furthermore, let DDDd

~k
be the 2µ-dimensional

representation of Hd
~k

, whose basis functions are the 2µ Bloch spinors ψ~k,q,s(~r, t) with wave vector ~k.
DDDd
~k

either is irreducible or the direct sum over double-valued irreducible representations of Hd
~k

. The
representationsDDDd

~k
follow Equation (96),

DDDd
~k

= DDDaff
~k
⊗ ddd1/2, (97)

where the µ-dimensional representations DDDaff
~k

define the affiliated single-valued band. Thus, also, each
DDDaff
~k

is the direct sum over single-valued irreducible representations of H0.
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We may choose the coefficients giq(~k) and fms(q,~k) in Equations (73) and (72), respectively,
in such a way that the spin-dependent Wannier functions are optimally-localized (Definition 5) and
symmetry-adapted to the double group Hd (Definition 18) if the characters χ~k(a) of the single-valued
representationsDDDaff

~k
satisfy Equation (38).

The complex numbers di(α) in Equation (39) stand for the elements of the one-dimensional
representations dddi of G0p fixing the given representation DDD defining the spin-dependent Wannier
functions (according to Definition 19).

7.3. Time Inversion

7.3.1. Time-Inversion Symmetry of the Spin-Dependent Wannier Functions

Within the nonadiabatic Heisenberg model, we are not interested in spin-dependent Wannier functions
that are symmetry-adapted to a general magnetic group, as given in Equation (57), but we only demand
that they are adapted to the “grey” [32] magnetic group:

Md = Hd +KHd, (98)

or, in brief, we demand that they are adapted to the time-inversion symmetry. K still denotes the operator
of time inversion acting on a function of position f(~r) according to Equation (59) and on Pauli’s spin
functions us(t) according to:

Kus(t) = ±u−s(t) (99)

(see, e.g., Table 7.15 of [32]), where we may define the plus to belong to s = +1
2

and the minus to
s = −1

2
.

The index m of the spin-dependent Wannier functions we still interpret as the quantum number of the
crystal spin. Consequently, we demand that K acts on m in the same way as it act on s,

Kw~T ,m(~r, t) = ±w~T ,−m(~r, t) (100)

where, again, we define the plus to belong to m = +1
2

and the minus to m = −1
2
.

Definition 21 (symmetry-adapted to a magnetic group). We call the spin-dependent Wannier functions
“symmetry-adapted to the magnetic group Md” as given in Equation (98) if they are symmetry-adapted
to Hd (Definition 18), and if, in addition, Equation (100) is satisfied.

In analogy to Equation (83), Equation (100) may be written as:

Kw~T ,m(~r, t) = Nii

1
2∑

m′=− 1
2

nm′mw~T ,m′(~r, t) (101)

where N = [Nij] denotes the µ-dimensional identity matrix:

N =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 = 1 (102)
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and

n = [nmm′ ] =

(
0 −1

1 0

)
. (103)

Equation (101) shows that the 2µ-dimensional matrix:

Nd = N× n (104)

is the matrix representative of the operator K of time inversion in the co-representation of the magnetic
point group:

Md
0 = Hd

0 +KHd
0 (105)

derived from the representation DDDd in Equation (89). Thus, the matrix Nd has to comply (Section 6)
with the three equations, (65), (66) and (69), which now may be written as:

NdNd∗ = Dd(K2) = −1, (106)

Dd(α) = NdDd∗(α)Nd−1 for α ∈ Hd
0 , (107)

and

S
d∗

( ~K) = Nd∗S
d∗

( ~K)Nd∗−1, (108)

respectively.
The first Equation (106) is true because:

nn∗ (= nn) = −1 (109)

and the second Equation (107) is satisfied if n and N in Equation (104) follow two conditions,

d1/2(α) = nd∗1/2(α)n−1 for α ∈ Hd
0 , (110)

and
D(α) = ND∗(α)N−1 for α ∈ H0. (111)

The first condition (110) is always valid (see, e.g., Table 7.15 (q) of [32]), and the second condition (111)
is satisfied if the representationDDD defining the spin-dependent Wannier functions is real.

In the third Equation (108), the diagonal matrix S
d∗

( ~K) has the form:

S
d∗

( ~K) = S
∗
( ~K)×

(
1 0

0 1

)
(112)

(cf. Equation(93)), where S
∗
( ~K) is given in Equation (54). Thus, Equation (108) decomposes into

two parts, (
1 0

0 1

)
= n

(
1 0

0 1

)
n−1 (113)

and
S
∗
( ~K) = N∗S

∗
( ~K)N∗−1 (114)

both of which are evidently satisfied.
We summarize our results in this Section 7.3.1 in:
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Theorem 10. The coefficients giq(~k) and fms(q,~k) in Equations (73) and (72), respectively, may be
chosen in such a way that the spin-dependent Wannier functions are optimally-localized (Definition 5)
and even symmetry-adapted to the magnetic group Md in Equation (98) (Definition 21) if, according
to Theorem 9, they may be chosen symmetry-adapted to Hd and if, in addition, the representation DDD
defining the spin-dependent Wannier functions used in Theorem 9 is real.

Definition 22 (superconducting band). If, according to Theorem 10, the unitary transformation
in Equation (74) may be chosen in such a way that the spin-dependent Wannier functions are
optimally-localized and symmetry-adapted to the magnetic group Md in Equation (98), we call the
band under consideration (as defined by the double-valued representations DDDd

~k
in Equation (97)) a

superconducting band.
Within the nonadiabatic Heisenberg model, the existence of a narrow, roughly half-filled

superconducting band in the band structure of a material is a precondition for the stability of a
superconducting state in this material.

7.3.2. Time-Inversion Symmetry of the Matrices f(q,~k)

In this section, we derive the time-inversion symmetry of the matrices f(q,~k) defined in Equation (72)
and shall give the result in Theorem 11. Though evidence for this important theorem was already
provided in [11] and later papers [16,35], we repeat the proof with the notations used in the present paper.

Combining Equations (73) and (74), we may write the spin-dependent Wannier functions as:

wi,m(~r − ~R− ~ρi, t) =
1√
N

BZ∑
~k

µ∑
q=1

e−i
~k(~R+~ρi)giq(~k)ϕ~k,q,m(~r, t). (115)

By application of the operator K of time-inversion on Equation (115), we receive:

Kwi,m(~r − ~R− ~ρi, t) =
1√
N

BZ∑
~k

µ∑
q=1

ei
~k(~R+~ρi)g∗iq(

~k)Kϕ~k,q,m(~r, t). (116)

Equation (100), on the other hand, may be written as:

Kwi,m(~r − ~R− ~ρi, t) =
1√
N

BZ∑
~k

µ∑
q=1

e−i
~k(~R+~ρi)giq(~k)ν(m)ϕ~k,q,−m(~r, t) (117)

or, by replacing under the sum ~k by −~k,

Kwi,m(~r − ~R− ~ρi, t) =
1√
N

BZ∑
~k

µ∑
q=1

ei
~k(~R+~ρi)giq(−~k)ν(m)ϕ−~k,q,−m(~r, t), (118)

where
ν
(
± 1

2

)
= ±1. (119)

Comparing Equation (118) with Equation (116), we receive the two equations:

g∗iq(
~k) = giq(−~k) (120)
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and
Kϕ~k,q,m(~r, t) = ν(m)ϕ−~k,q,−m(~r, t). (121)

While the first Equation (120) is relatively meaningless, from the second Equation (121), we may derive
the important Equation (125):

Equation (72) yields the two equations:

ϕ−~k,q,−m(~r, t) =

+ 1
2∑

s=− 1
2

f−m,−s(q,−~k)ψ−~k,q,−s(~r, t) (122)

where now, the sum runs over −s, and:

Kϕ~k,q,m(~r, t) =

+ 1
2∑

s=− 1
2

f ∗ms(q,
~k)ν(s)ψ−~k,q,−s(~r, t) (123)

because [32]:
Kψ~k,q,s(~r, t) = ν(s)ψ−~k,q,−s(~r, t). (124)

Theorem 11. Substituting Equations (122) and (123) into Equation (121), we obtain the fundamental
condition:

f ∗ms(q,−~k) = ±f−m,−s(q,~k), (125)

where the plus sign holds for m = s and the minus for m = −s.
Within the nonadiabatic Heisenberg model, the validity of this condition is the cause of the formation

of symmetrized Cooper pairs in superconducting bands [16,35,36].

This Equation (125) may evidently be written in the more compact form:

f∗(q,−~k) = nf(q,~k)n−1 (126)

where n is given in Equation (103).

7.4. ~k-Dependence of the Matrices f(q,~k)

Only those bands are of physical relevance in the theory of superconductivity which are closed not
before the spin-dependent perturbation Hs is activated. In this section, we derive the essential property
of such bands and shall give the result in Theorem 12.

Let ~k be a point lying on the surface of the first domain in the Brillouin zone for the space group
H , and let H~k be the little group of ~k. In this section, ~k need not be a point of symmetry (according to
Definition 13), but also may lie in a line or a plane of symmetry. However, we only consider wave vectors
~k for which Equation (80) is valid. Hence, in general, the Bloch functions ϕ~k,q(~r) are basis functions
for a one-dimensional (single-valued) representation of H~k. Nevertheless, in very rare cases, the Bloch
function ϕ~k,q(~r) can be a basis function for a degenerate (single-valued) representation. Both cases shall
be examined separately.
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Just as in Equation (3.1) of [28] we arrange the 2µ Bloch spinors us(t)ϕ~k,q(~r) in Equation (80) as a
column vector:

Φ~k(~r, t) =



u+ 1
2
(t)ϕ~k,µ(~r)

u− 1
2
(t)ϕ~k,µ(~r)

...
u+ 1

2
(t)ϕ~k,2(~r)

u− 1
2
(t)ϕ~k,2(~r)

u+ 1
2
(t)ϕ~k,1(~r)

u− 1
2
(t)ϕ~k,1(~r)


(127)

with increasing energy,
E~k,q−1 ≤ E~k,q ≤ E~k,q+1. (128)

Then, the analogous column vector Φ̃~k(~r, t) consisting of the Bloch spinors ϕ̃~k,i,m(~r, t) in
Equation (73) may be written as:

Φ̃~k(~r, t) = gd(~k) · fd(~k) · Φ~k(~r, t) (129)

where

gd(~k) = g(~k)×

(
1 0

0 1

)
(130)

and

fd(~k) =


f(µ,~k) 0 0 0

... . . . ...
...

0 0 f(2, ~k) 0

0 0 0 f(1, ~k)

 . (131)

The matrices g(~k) and f(q,~k) are defined by Equations (75) and (76) and still follow Equations (8)
and (77), respectively, and:

0 =

(
0 0

0 0

)
. (132)

The matrices gd(~k) · fd(~k) must satisfy Equations (4.8) and (4.29) of [28] in order that the Wannier
functions are symmetry-adapted and optimally-localized. (We shall consider only Equation (4.29)
of [28], because this equation comprises Equation (4.8) ibidem).

Using the notations of the present paper, Equation (4.29) of [28] may be written as:

Dd
~k
(a) =

(
gd∗(~k) · fd∗(~k)

)−1 · D̂
d

~k(a) ·
(
gd∗(~k) · fd∗(~k)

)
for a ∈ Hd

~k
, (133)

where the matrices Dd
~k
(a) and D̂

d

~k(a) denote the representatives of the the representations DDDd
~k

and D̂DD
d

~k

given in Equations (97) and (95), respectively. Assume that the representations DDDd
~k

are determined

according to Theorem 9. Then, the representations DDDaff
~k

and D̂DD~k, as well as the representations DDDd
~k

and

D̂DD
d

~k are equivalent for the points ~k of symmetry. Consequently, these representations are even equivalent
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in any point ~k of the Brillouin zone, because the compatibility relations are valid in a closed band [28].
First, from the equivalence ofDDDaff

~k
and D̂DD~k, it follows that the equation:

Daff
~k

(a) = g∗−1(~k) · D̂~k(a) · g∗(~k) for a ∈ H~k (134)

is solvable for any ~k.

7.4.1. The Bloch Functions ϕ~k,q(~r) Are Basis Functions for a Non-Degenerate Representation

In this subsection, we assume that the Bloch states ϕ~k,q(~r) are basis functions for a one-dimensional
(single-valued) representation of H~k.

The representationsDDDd
~k

are the direct sum over the double-valued representations of the Bloch spinors
in the considered band, as arranged in the column vector given in Equation (127). Hence, the matrices
Dd
~k
(a) on the left-hand side of Equation (133) may be written as:

Dd
~k
(a) =


d~k,µ(a) 0 0 0

... . . . ...
...

0 0 d~k,2(a) 0

0 0 0 d~k,1(a)

× d1/2(α) (135)

(for a = {α|~tα} ∈ Hd
~k

), where the Bloch state ϕ~k,q(~r) is the basis function for the single-valued
representations ddd~k,q.

The matrices on the right-hand side of Equation (133) may be written as:

(
gd∗(~k) · fd∗(~k)

)−1 · D̂
d

~k(a) ·
(
gd∗(~k) · fd∗(~k)

)
=(

fd∗(~k)
)−1 ·

[(
gd∗(~k)

)−1 · D̂
d

~k(a) · gd∗(~k)
]
· fd∗(~k).

(136)

Using Equations (130), (94) and (134), we may write the matrices between the square brackets as:

(
gd∗(~k)

)−1 · D̂
d

~k(a) · gd∗(~k) =
(
g∗−1(~k) · D̂~k(a) · g∗(~k)

)
× d1/2(α)

= Daff
~k

(a)× d1/2(α)

=


daff
~k,µ

(a) 0 0 0
... . . . ...

...
0 0 daff

~k,2
(a) 0

0 0 0 daff
~k,1

(a)

× d1/2(α),

(137)

where, again, the matrices daff
~k,q

(a) form single-valued one-dimensional representations dddaff
~k,q

. Remember
that (Definition 20) the single-valued representations dddaff

~k,q
are not associated with the Bloch functions

of the considered band, but are fixed by the representation DDD defining the spin-dependent Wannier
functions.
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Equation (137) shows that also the matrices between the square brackets form a representation being
the direct sum over double-valued representations, and hence, Equation (133) splits into the µ equations:

ddd~k,q ⊗ ddd1/2 = f∗−1(q,~k) ·
(
dddaff
~k,q
⊗ ddd1/2

)
· f∗(q,~k), (138)

(1 ≤ q ≤ µ), which are solvable because the representations DDDd
~k

and D̂DD
d

~k and, hence, also, the
representations ddd~k,q ⊗ ddd1/2 and dddaff

~k,q
⊗ ddd1/2 are equivalent.

We now distinguish between two possibilities:

– If the considered energy band was already closed before the spin-dependent perturbation Hs

was activated, then the affiliated single-valued band actually exists as a closed band in the band
structure of the material under consideration, and thus, the representations ddd~k,q and dddaff

~k,q
are equal,

ddd~k,q = dddaff
~k,q
. (139)

Hence, all of the µ equations (138) are solved by:

f(q,~k) ≡ 1, (140)

with the consequence that the Wannier functions are, in fact, not spin-dependent, but are usual
Wannier functions, as defined in Equation (6).

– If the considered energy band was not closed before the spin-dependent perturbation Hs was
activated, then not all of the representations ddd~k,q are equal to dddaff

~k,q
. Evidently, the q-th equation

is not solved by f(q,~k) ≡ 1 when ddd~k,q 6= dddaff
~k,q

, and consequently, the Wannier function actually are
spin-dependent.

We summarize this result in Theorem 12.

Theorem 12. If the considered energy band were not closed before the spin-dependent perturbationHs

was activated, the matrices f(q,~k) in Equation (72) cannot be chosen independent of ~k.

In the Section 7.5, the matrix f(q,~k) shall by determined for some points in the Brillouin zone
of niobium.

7.4.2. The Bloch Functions ϕ~k,q(~r) Are Basis Functions for a Degenerate Representation

In rare cases, it can happen that at a special point ~k, some of the Bloch states ϕ~k,q(~r) are basis
functions for a degenerate (single-valued) representation and that this degeneracy is not removed by the
perturbation Hs. For example, each of the two superconducting bands in the space group P4/nmm =

ΓqD
7
4h (129) listed in Table 3(b) of [13] consist of two branches degenerate at points M and A. The

single-valued Bands 1 and 2 in Table 3(a) of [13] are affiliated with the superconducting Band 1 in
Table 3(b) ibidem; Bands 3 and 4 in Table 3(a) are affiliated with Band 2 in Table 3(b).

It is crucial for the localization of the spin-dependent Wannier functions that also in this case,
Equation (133) is solvable. We reveal the solubility of this equation for the example of the bands listed
in Table 3 of [13].
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At point M in each of these bands, Equation (138) may be written as:

ddd~kM ⊗ ddd1/2 =
(
fd∗(~kM)

)−1 ·
(
dddaff
~kM
⊗ ddd1/2

)
· fd∗(~kM), (141)

where ddd~kM and dddaff
~kM

now are two-dimensional (single-valued) representations, and the matrix fd(~kM)

now is four-dimensional,

fd(~kM) =

(
f(2, ~kM) 0

0 f(1, ~kM)

)
, (142)

see Equation (131).
Though ddd~kM ⊗ ddd1/2 and dddaff

~kM
⊗ ddd1/2 again are equivalent, it is not immediately evident that

Equation (141) is solvable, because fd(~kM) is not a general 4 × 4 matrix. However, also, the
representations ddd~kM ⊗ ddd1/2 and dddaff

~kM
⊗ ddd1/2 have a very special form, since they may be written simply

as Kronecker products. Equation (141) indeed is solvable, since it expresses the most general unitary
transformation between these special representations.

For instance, consider the point M of one of the bands in Table 3b of [13], and let ddd~kM = M3 be given
by the calculated band structure of the material under consideration. In addition, let us choose Band 1
in Table 3a of [13] as the affiliated single-valued band. Thus, we have dddaff

~kM
= M2, and Equation (141) is

solved by:

fd(~kM) =


(

0 −i
1 0

)
0

0

(
0 1

−i 0

)
 , (143)

as may be determined by means of the tables given in [32].
Though both Band 1 and Band 2 in Table 3b of [13] are mathematically correct superconducting

bands, they cannot be occupied in undoped LaFeAsO [13], which, consequently, is not superconducting.

7.4.3. Additions

In this subsection, we show that neither Equation (120) nor Equation (126) is inconsistent with
Equation (133). Remember that in this section, we only consider points ~k for which Equation (80)
is valid.

First, taking the complex conjugate of Equation (134), we receive with DDDaff∗
~k

= DDDaff
−~k

and D̂DD
∗
~k = D̂DD−~k

the condition:
DDDaff
−~k = g−1(~k) · D̂DD−~k · g(~k) (144)

showing that we may choose:
g∗(−~k) = g(~k) (145)

and hence, Equation (120) is consistent with Equation (144) and, consequently, with Equation (133).
Secondly, transforming the complex conjugate of Equation (138) with the matrix n in Equation (103)

and using ddd∗~k,q = ddd−~k,q, ddd
aff∗
~k,q

= dddaff
−~k,q

and:

ddd∗1/2 = n−1ddd1/2n (146)
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(see Equation (110)), we obtain the equation:

ddd−~k,q ⊗ ddd1/2 =
(
nf(q,~k)n−1

)−1 · (dddaff
−~k,q
⊗ ddd1/2) ·

(
nf(q,~k)n−1

)
(147)

showing that, in fact, we may choose:

f∗(q,−~k) = nf(q,~k)n−1.

Hence, Equation (126) is consistent with Equation (133).

7.5. Example: Band Structure of Niobium

Consider the superconducting band (Definition 22) of niobium in Figure 1, as denoted by the dotted
line. At the four points of symmetry Γ, H , N and P in the Brillouin zone for the space group O9

h of
niobium, this band is characterized by the representations:

Γ′25, H
′
25, N2 and P4

of O9
h in the familiar notation of Bouckaert, Smoluchowski and Wigner [29], which may be written as:

Γ+
5 , H

+
5 , N

+
4 , and P5, (148)

respectively, in the notation of Bradley and Cracknell [32] (see Tables 5.7 and 5.8 ibidem), which is
consistently used in our papers. When we take into account that the electrons possess a spin, we receive:

Γ+
5 ⊗ d1/2 = Γ+

7 ⊕ Γ+
8 ,

H+
5 ⊗ d1/2 = H+

7 ⊕ H+
8 ,

P5 ⊗ d1/2 = P7 ⊕ P8,

N+
4 ⊗ d1/2 = N+

5 .

Hence, at the points Γ, H , P and N , the Bloch spinors can be transformed in such a way that at each
of the four points Γ,H ,N and P , two spinors form basis functions for the double-valued representations:

Γ+
7 , H

+
7 , P7, and N+

5 , (149)

respectively. We may unitarily transform the Bloch spinors ψ~k,q,s(~r, t) of this single energy
band characterized by the representations (149) into optimally-localized and symmetry-adapted
spin-dependent Wannier functions, because Theorem 9 yields with H0 = Oh, µ = 1, ~ρ1 = ~0,
G0p = H0 = Oh and ddd1 = Γ+

2 first the single-valued representations:

DDDaff
Γ = Γ+

2 , DDD
aff
H = H+

2 , DDD
aff
P = P2, andDDDaff

N = N+
3 (150)

and then, with Equation (97), the double-valued representations (149).
The representations in Equation (150) define (the only) single-valued band affiliated with the

superconducting band defined by the representations in Equation (149) (Definition 20). The
representationDDD defining the spin-dependent Wannier functions (Definition 19) is equal to Γ+

2 ,

DDD = Γ+
2 . (151)
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DDD is one-dimensional, since we have one Nb atom in the unit cell. The spin-dependent Wannier functions
may be chosen symmetry-adapted to the magnetic group in Equation (98), because Γ+

2 is real.

Figure 1. Band structure of Nb after Mattheis [37]. The dotted line denotes the
superconducting band.

The Bloch functions of the superconducting band cannot be unitarily transformed into usual Wannier
functions, which are optimally-localized and symmetry-adapted to O9

h, since it was not closed before
the spin-dependent perturbation Hs was activated. Thus (Theorem 12), we cannot choose the matrix
f(1, ~k) in Equation (72) (with q = 1, since we only have one branch in the superconducting band
of Nb) independent of ~k when we demand that the Wannier functions are optimally-localized and
symmetry-adapted. This important statement shall be demonstrated by an example:

Consider the point N with the wave vector ~kN in the first domain of the Brillouin zone for O9
h. The

representations dddaff
~kN ,1

and ddd~kN ,1 in Equation (138) are given by Equations (150) and (148),

dddaff
~kN ,1

= N+
3 (152)

and
ddd~kN ,1 = N+

4 . (153)

Thus, Equation (138) may be written as

N+
4 ⊗ ddd1/2 = (f∗(1, ~kN))−1 · (N+

3 ⊗ ddd1/2) · f∗(1, ~kN). (154)

This equation is solvable, since both representations N+
4 ⊗ ddd1/2 and N+

3 ⊗ ddd1/2 are equivalent, but it is
evidently not solved by f(1, ~kN) = 1. In fact, we receive:

f(1, ~kN) =

(
0 1

−i 0

)
(155)

by means of Tables 5.7 and 6.1 of [32]. This is the value of f(1, ~k) also on the planes of symmetry
intersecting at N in the neighborhood of N . Further away from N , however, f(1, ~k) may change, since
it is ~k dependent.
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In the same way, we find:

f(1, ~kF ) =
1√
3

(
−i −1 + i

1 + i i

)
(156)

for the points ~kF on the line F .
Equations (155) and (156) demonstrate that f(1, ~k) cannot be chosen independent of ~k in the

superconducting band of niobium.

8. Conclusions

In the present paper, we gave the group theory of optimally-localized and symmetry-adapted Wannier
functions with the expectation that it will be helpful to determine the symmetry of the Wannier functions
in the band structure of any given material. The paper is written in such a way that it should be possible
to create a computer program automating the determination of the symmetry of the Wannier functions.

In this paper, we restricted ourselves to Wannier functions that define magnetic or superconducting
bands. That means that we considered only Wannier functions centered at the atomic positions. When
other physical phenomena shall be explored, as, e.g., the metallic bond, other Wannier functions may be
needed, which are centered at other positions, e.g., between the atoms. It should be noted that [28,30,33]
define optimally-localized and symmetry-adapted Wannier functions in general terms, which may be
centered at a variety of positions ~ρi being different from the positions of the atoms.

Acknowledgments

We are very indebted to Guido Schmitz for his support of our work.

Author Contributions

Ekkehard Krüger wrote the group theory in Sections 2–7; Horst P. Strunk initiated this paper and
wrote parts of Section 1, the Introduction.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Scalapino, D.J. The Case for dx2− y2 Pairing in the Cuprate Superconductors. Phys. Rep. 1995,
250, 329–365.

2. Lechermann, F.; Boehnke, L.; Grieger, D.; Piefke, C. Electron correlation and magnetism at the
LaAlO3/SrTiO3 interface: A DFT+DMFT investigation. Phys. Rev. B 2014, 90, doi:10.1103/
PhysRevB.90.085125.

3. Eberlein, A.; Metzner, W. Superconductivity in the two-dimensional t-t′–Hubbard model.
Phys. Rev. B 2014, 89, doi:10.1103/PhysRevB.89.035126.

4. Marzari, N.; Mostofi, A.A.; Yates, J.R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier
functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475.



Symmetry 2015, 7 597

5. Krüger, E. Stability and symmetry of the spin–density–wave–state in chromium. Phys. Rev. B
1989, 40, 11090–11103.

6. Krüger, E. Energy band with Wannier functions of ferromagnetic symmetry as the cause of
ferromagnetism in iron. Phys. Rev. B 1999, 59, 13795–13805.

7. Krüger, E. Antiferromagnetic, Neutral, and Superconducting Band in La2CuO4. J. Supercond.
2005, 18, 433–454.

8. Krüger, E. Theoretical investigation of the magnetic structure in YBa2Cu3O6. Phys. Rev. B
2007, 75, doi:10.1103/PhysRevB.75.024408.

9. Krüger, E.; Strunk, H.P. Theoretical investigation of the magnetic structure in YBa2Cu3O6.
J. Supercond. 2011, 24, 2103–2117.

10. Krüger, E.; Strunk, H.P. Structural Distortion in Antiferromagnetic BaFe2As2 as a Result of
Time-Inversion Symmetry. J. Supercond. 2014, 27, 601–612.

11. Krüger, E. Superconductivity Originating from Quasi-Orbital Electrons II. The Superconducting
Ground State of Quasi-Orbital Conduction Electrons. Phys. Status Solidi B 1978, 85, 493–503.

12. Krüger, E. Superconducting Bands Stabilizing Superconductivity in YBa2Cu3O7 and MgB2.
J. Supercond. 2010, 23, 213–223.

13. Krüger, E. The Reason why Doping Causes Superconductivity in LaFeAsO. J. Supercond. 2012,
25, 989–999.

14. Krüger, E. Modified BCS Mechanism of Cooper Pair Formation in Narrow Energy Bands of
Special Symmetry II. Matthias Rule Reconsidered. J. Supercond. 2001, 14, 551–561.

15. Krüger, E. Nonadiabatic extension of the Heisenberg model. Phys. Rev. B 2001, 63, doi:10.1103/
PhysRevB.63.144403.

16. Krüger, E. Modified BCS Mechanism of Cooper Pair Formation in Narrow Energy Bands of
Special Symmetry I. Band Structure of Niobium. J. Supercond. 2001, 14, 469–489.

17. Huang, Q.; Qiu, Y.; Bao, W.; Green, M.A.; Lynn, J.W.; Gasparovic, Y.C.; Wu, T.; Wu, G.;
Chen, X.H. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in
the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors. Phys. Rev.
Lett. 2008, 101, doi:10.1103/PhysRevLett.101.257003.

18. De la Cruz, C.; Huang, Q.; Lynn, J.W.; Li, J.; Ratcliff, W., II; Zarestky, J.L.; Mook, H.A.;
Chen, G.F.; Luo, J.L.; Wang, N.L.; et al. Magnetic order close to superconductivity in the
iron-based layered LaO1−xFxFeAs systems. Nature 2008, 453, 899–902.

19. Nomura, T.; Kim, S.W.; Kamihara, Y.; Hirano, M.; Sushko, P.V.; Kato, K.; Takata, M.;
Shluger, A.L.; Hosono, H. Crystallographic phase transition and high-Tc superconductivity in
LaFeAsO. Supercond. Sci. Technol. 2008, 21, 125028–125036.

20. Kitao, S.; Kobayashi, Y.; Higashitaniguchi, S.; Saito, M.; Kamihara, Y.; Hirano, M.; Mitsui, T.;
Hosono, H.; Seto, M. Spin Ordering in LaFeAsO and Its Suppression in Superconductor
LaFeAsO0.89F0.11 Probed by Mössbauer Spectroscopy. J. Phys. Soc. Jpn. 2008, 77,
doi:10.1143/JPSJ.77.103706.



Symmetry 2015, 7 598

21. Nakai, Y.; Ishida, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Evolution from Itinerant
Antiferromagnet to Unconventional Superconductor with Fluorine Doping in LaFeAs(O1−xFx)
Revealed by 75As and 139La Nuclear Magnetic Resonance. J. Phys. Soc. Jpn. 2008, 77,
doi:10.1143/JPSJ.77.073701.

22. Krüger, E.; Strunk, H.P. Structural Distortion as Prerequisite for Superconductivity in LiFeAs.
J. Supercond. 2012, 25, 1743–1745.

23. Krüger, E. One- and Two-Dimensional Sublattices as Preconditions for High–Tc
Superconductivity. Phys. Status Solidi B 1989, 156, 345–354.

24. Krüger, E. Modified BCS Mechanism of Cooper Pair Formation in Narrow Energy Bands of
Special Symmetry III. Physical Interpretation. J. Supercond. 2002, 15, 105–108.

25. Ibañez-Azpiroz, J.; Eiguren, A.; Bergara, A.; Pettini, G.; Modugno, M. Self-consistent
tight-binding description of Dirac points moving and merging in two-dimensional optical lattices.
Phys. Rev. A 2013, 88, doi:10.1103/PhysRevA.88.033631.

26. Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite
energy bands. Phys. Rev. B 1997, 56, doi:10.1103/PhysRevB.56.12847.

27. Souza, I.; Marzari, N.; Vanderbilt, D. Maximally localized Wannier functions for entangled
energy bands. Phys. Rev. B 2001, 65, 035109:1–035109:13.

28. Krüger, E. Symmetrische verallgemeinerte Wannierfunktionen I. Definition und Grundlagen.
Phys. Status Solidi B 1972, 52, 215–230.

29. Bouckaert, L.P.; Smoluchowski, R.; Wigner, E. Theory of Brillouin Zones and Symmetry
Properties of Wave Functions in Crystals. Phys. Rev. 1936, 50, 58–67.

30. Krüger, E. Symmetrische verallgemeinerte Wannierfunktionen II. Eigenschaften and
Beispiele–Bandstruktur des Germaniums. Phys. Status Solidi B 1972, 52, 519–531.

31. Streitwolf, H.W. Gruppentheorie in der Festkörperphysik; Akademische Verlagsgesellschaft
Geest & Portig KG: Leipzig, Germany, 1967. (In German)

32. Bradley, C.; Cracknell, A.P. The Mathematical Theory of Symmetry in Solids; Claredon: Oxford,
UK, 1972.

33. Krüger, E. Spinabhängige und optimal lokalisierte Funktionen geringer Energieunschärfe in
Metallen. Phys. Status Solidi B 1974, 61, 193–206.

34. Krüger, E. Superconductivity Originating from Quasi-Orbital Electrons III. Quasi-Orbital
Conduction Electrons in Non-Adiabatic Systems. Phys. Status Solidi B 1978, 90, 719–731.

35. Krüger, E. Spin-phonon interaction as possible necessity for superconductivity. Phys. Rev. B
1984, 30, 2621–2633.

36. Krüger, E. Superconductivity Originating from Quasi-Orbital Electrons I. The Model of
Quasi-Orbital Conduction Electrons. Phys. Status Solidi B 1978, 85, 261–270.

37. Mattheis, L.F. Electronic Structure of Niobium and Tantalum. Phys. Rev. B 1969, 1, 373–381.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Usual (Spin-Independent) Wannier Functions
	Definition
	Symmetry-Adapted Wannier Functions

	Determination of the Representations D-.4 Defining the Wannier Functions
	General Properties of the Representatives D() of D-.4
	Necessary condition for of the representatives D() of D-.4
	Sufficient Condition for of the Representatives D() of D-.4
	Case (i) of Section 3.2
	Case (ii) of Section 3.2

	Not All of the Atoms Are Connected by Symmetry

	Condition for Optimally-Localized Symmetry-Adapted Wannier Functions
	Proof of Theorem 5
	Equation (4.28) of ew1
	Equation (4.17) of ew1

	Magnetic Groups
	Spin-Dependent Wannier Functions
	Definition
	Symmetry-Adapted Spin-Dependent Wannier Functions
	Time Inversion
	Time-Inversion Symmetry of the Spin-Dependent Wannier Functions
	Time-Inversion Symmetry of the Matrices f(q, )

	-Dependence of the Matrices f(q, )
	The Bloch Functions ,q() Are Basis Functions for a Non-Degenerate Representation
	The Bloch Functions ,q() Are Basis Functions for a Degenerate Representation
	Additions

	Example: Band Structure of Niobium

	Conclusions

