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Using a dynamical density functional theory we analyse the density profile of a colloidal liquid near a wall under
shear flow. Due to the symmetries of the system considered, the naive application of dynamical density functional
theory does not lead to a shear induced modification of the equilibrium density profile, which would be expected
on physical grounds. By introducing a physically motivated dynamic mean field correction we incorporate the
missing shear induced interparticle forces into the theory. We find that the shear flow tends to enhance the
oscillations in the density profile of hard spheres at a hard wall and, at sufficiently high shear rates, induces a
non-equilibrium transition to a steady state characterized by planes of particles parallel to the wall. Under
gravity, we find that the centre of mass of the density distribution increases with shear rate, i.e. shear increases the
potential energy of the particles.
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1. Introduction

Classical Density Functional Theory (DFT) provides a
powerful and general framework for determining the
equilibrium microstructure and thermodynamics of

classical many particle systems [1,2]. Of particular
interest is the one-body density profile �(r) resulting
from application of a time-independent external poten-
tial field Vext(r). Within DFT, the density profile of a
one-component system follows from functional mini-
mization of the Grand potential

O½�� ¼ F id½�� þ F ex½�� þ
Z

drðV extðrÞ � �Þ�ðrÞ, ð1Þ

with respect to �(r), where � is the chemical potential
and F ex[�] is the unknown ‘excess’ part of the
Helmholtz free energy, containing details of the
interparticle interactions. The ideal gas free energy is
given exactly by

F id½�� ¼
Z

dr�ðrÞ½lnðL3�ðrÞÞ � 1�, ð2Þ

where L is the thermal de Broglie wavelength. For
many important model systems (e.g. hard spheres [3],
colloid–polymer mixtures [4,5], rod–sphere mixtures
[6]) there exist accurate approximations for the excess
Helmholtz free energy which yield equilibrium density

profiles in excellent agreement with those obtained

from numerical simulation.
Given that DFT provides a clear method for

determining equilibrium density distributions, it is

natural to next investigate the dynamics of the density

profile in the presence of a time-dependent external

field Vext(r, t). The simplest, phenomenological, route

to an equation of motion for �(r, t) is to assume that

the average particle current j(r, t) arises from the

gradient of a non-equilibrium chemical potential

jðr, tÞ ¼ �G�ðr, tÞr�ðr, tÞ, ð3Þ
where G is the mobility. Assuming that �(r, t) is given
by the functional derivative of the Helmholtz free

energy with respect to �(r, t) and employing the

continuity equation thus leads to the familiar equation

of dynamical density functional theory (DDFT)

@�ðr, tÞ
@t

¼ r � G�ðr, tÞr �F½�ðr, tÞ�
��ðr, tÞ

� �
, ð4Þ

where F is the equilibrium Helmholtz free energy

functional, evaluated using the instantaneous non-

equilibrium density profile. Although Equation (4) was

first proposed by Evans [1], subsequent work has

clarified greatly the nature of the approximations

involved. Both Marconi and Tarazona [7,8], and
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Archer and Evans [9] have demonstrated that approx-

imating the non-equilibrium chemical potential using

the equilibrium Helmholtz free energy is equivalent to

assuming that the inhomogeneous pair correlations in

non-equilibrium are the same as those for an equilib-

rium fluid with density profile �(r, t). Specifically, for a
system interacting via a pair-potential �(jr1� r2j) the

equilibrium sum-rule [1]Z
dr2�

ð2Þðr1, r2Þr1�ðjr1 � r2jÞ ¼ �ðr1Þr1
�F ex

��ðr1Þ , ð5Þ

is assumed to hold. The integral on the l.h.s. of (5)

occurs when coarse graining the N-particle

Smoluchowski equation to the one-body level by

integration over N� 1 degrees of freedom. Applying

the equilibrium equality (5) to close the resulting non-

equilibrium expression leads directly to (4). The

implicit ‘adiabatic’ approximation in applying (5) to

non-equilibrium is that the one-time pair correlations

are instantaneously equilibrated to those of an equi-

librium system with density �(r, t). For a wide range of

systems, the good qualitative agreement between the

results of Brownian dynamics simulation and DDFT

validates the adiabatic approximation when applied to

inhomogeneous fluid states out of equilibrium.

However, the approximation may break down

for dense fluids close to dynamical arrest (e.g. hard-

sphere-like colloidal glasses), for which the structural

relaxation time becomes large.
The possibility of going beyond the adiabatic

approximation has been explored on a formal level

[10]. However, an explicit and implementable method

of incorporating temporal nonlocality into the theory

remains to be found. More recently, the DDFT (4) has

been rederived using projection operator methods [11]

and extended to incorporate pair hydrodynamics

[12–14], orientational degrees of freedom [15] and

even self-propelled particles [16]. Going beyond

overdamped Smoluchowski dynamics, Marconi and

co-workers have developed a DDFT-type approach to

treat inertial systems which makes possible the study of

thermophoresis [17].
In order to address the influence of external flow on

inhomogeneous density distributions, a DDFT incor-

porating the advection of particles by a flowing solvent

has been developed [18]. The resulting advected-DDFT

equation of motion has a form identical to that of the

standard theory (4), but with the time derivative

replaced by the Stokes derivative

@�ðr, tÞ
@t

þ r � ð�ðr, tÞvðr, tÞÞ ¼ r � G�ðr, tÞr �F½�ðr, tÞ�
��ðr, tÞ

� �
,

ð6Þ

where v(r, t) is the velocity of the solvent. The
advected-DDFT is therefore simply standard DDFT
in the comoving frame and is thus subject to the same
adiabatic approximation as the original theory.
However, compared to situations for which the relax-
ation dynamics is of a purely diffusive nature, appli-
cation of the equilibrium identity (5) to an externally
driven system represents a more severe approximation.
For example, in the absence of an external potential
field, Equation (5) is automatically, and trivially,
satisfied for a homogeneous and isotropic fluid. This
is not the case for a driven system. Even when
Vext(r)¼ 0, the presence of an external flow field
distorts the pair correlation functions and renders the
integral term finite, whereas the spatial homogeneity of
the one-body density yields a value of zero for the r.h.s.

There is considerable current research activity in
the development of theoretical approaches to treat
colloidal systems driven into non-equilibrium states by
external flow. Much of the focus has been on the
description of dense states close to the glass transition
(see e.g. [19,20]). While the mode-coupling-type
approaches employed in these studies are capable of
capturing nonergodic behaviour, their application is
restricted to systems with a spatially homogeneous
density distribution. In contrast, Equation (6) is ideally
suited to address spatial inhomogeneity, but is incapa-
ble of describing glassy dynamics.

In the present work we will consider the application
of (6) to driven steady states. In order to clearly expose
the nature of the underlying approximations we will
focus on the specific test case of interacting colloidal
particles at a planar wall, with a shear flow acting
parallel to the wall. Consideration of this particular
external field and flow geometry reveals a serious
deficiency of applying (5) to close the equation of
motion for the one-body density of driven states. The
physics which is lost in making the closure approxi-
mation arises from a coupling between the interparticle
interactions and the external flow field and would, in
an exact treatment, be captured implicitly by the flow-
induced distortion of �(2)(r1, r2). Previous studies based
on (6) have focused on two cases: (i) noninteracting
particles, for which the only relevant coupling is that
between the external potential and flow fields [21,22],
and (ii) spherically inhomogeneous soft Gaussian
particles [18,23,24]. In these studies the combination
of soft particle interactions and spherical inhomoge-
neity served to obscure the failings of Equation (6)
addressed in the present work.

The paper will be structured as follows: in Section 2
we specify the system under consideration. In Section 3
we introduce the problem presented by the absence of a
coupling between the external flow and the
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interparticle interactions. In Sections 4 and 5 we
develop a mean field theory which captures the desired
coupling and propose a simple approximation for the
required convolution kernel. In Section 6 we detail the
Rosenfeld functional used to approximate the excess
free energy functional. In Section 7 we present and
analyse the density profiles of hard spheres at a hard
wall, both in the presence and absence of gravity.
In Section 8 we give a discussion and provide an
outlook for future work.

2. The system

We consider a system of N spherical colloidal particles
dispersed in an incompressible Newtonian solvent at
temperature T. The diameter d of the strongly repulsive
colloidal core provides the basic unit of length.
Assuming that the colloidal momenta are instanta-
neously thermalized, the time evolution of the proba-
bility distribution of particle positions,C(t)�C({ri}, t),
is dictated by the Smoluchowski equation [25]

@CðtÞ
@t

þ
X
i

›i � ji ¼ 0, ð7Þ

where the probability flux of particle i is given by

ji ¼ viðtÞCðtÞ �
X
j

Dij � ð›j � �Fj ÞCðtÞ, ð8Þ

with �¼ 1/kBT. The hydrodynamic velocity of particle i
due to the applied flow is denoted by vi(t) and the
diffusion tensor Dij describes (via the mobility tensor
Cij¼ �Dij) the hydrodynamic mobility of particle i
resulting from a force on particle j. The force Fj on
particle j is generated from the total potential energy
according to Fj¼�›jUN and includes the influence of
an external one-body potential field, as well as the
forces generated by interaction with other particles
(taken here to be pairwise additive)

UNðfrig, tÞ ¼
X
i

V extðri, tÞ þ
X
i5j

�ðjri � rj jÞ: ð9Þ

The three terms contributing to the flux thus represent
the competing effects of (from left to right in (8))
external flow, diffusion and potential interactions.

In order to focus on the thermodynamic (as
opposed to hydrodynamic) aspects of the cooperative
particle motion we will neglect hydrodynamic interac-
tions (HI) between the colloids. The expression (8) is
thus approximated in two ways: (i) the influence of the
N-particle configuration on the mobility of a given
particle is neglected, Dij¼D0�ij, where D0 is the bare
diffusivity. (ii) The velocity field is determined by the
translationally invariant (traceless) velocity gradient

tensor describing the affine motion, vi¼ v(ri, t)¼
j(t) � ri. Neglecting the dependence of j(t) upon the

colloid configuration enables the externally applied

flow to be prescribed from the outset, without requir-

ing that this be determined as part of a self-consistent

calculation.

3. Interaction-flow coupling

In the present work we wish to study the influence of
flow on a fully interacting, inhomogeneous system.

So far, the only application of (6) has been to

spherically inhomogeneous systems subject to a variety

of flow fields [18,21–24] (representing a single colloid in

a sea of ideal or Gaussian polymers). In particular,

under shear flow, the ideal particles accumulate at the

colloid surface within the two compressive quadrants

(I� r � jþ jT) � r50) and are depleted from the exten-

sional quadrants (I40), leading to ‘wake’ formation at
larger shear rates [22]. The advected DDFT (6) thus

captures a certain coupling between inhomogeneities in

the density field and external flow. However, this

‘external potential-flow coupling’ is a straightforward

consequence of employing an external potential (e.g. a

fixed sphere) which either directly obstructs the parti-

cles as they attempt to follow the affine flow, or

perturbs the solvent flow field such that the particles

are swept around the obstacle (when the appropriate
Stokes flow is employed).

A more demanding and illuminating test of the

advected-DDFT approach is provided by considering

external potentials which do not directly hinder the

affine path of the advected particles, but which may

nevertheless be expected to generate flow-dependent

density profiles. Emphasis may thus be placed upon

the nontrivial ‘interaction-flow coupling’. For the
purpose of the present work we will thus focus on

the special case of a time-independent external poten-

tial which varies in the y-direction and restricts the

particles to move in the half space

V extðrÞ ¼ 1, y5 d=2,

V ext
w ð yÞ, y4 d=2:

�
ð10Þ

The translational invariance of V ext
w within the xz-plane

has the consequence that the resulting equilibrium

density distribution varies in the y-direction only.

In addition to the external potential field, we specialize

the external flow field to a steady simple shear with flow

in the x-direction and a linear gradient in the
y-direction

v ¼ y _�êx, ð11Þ
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with shear rate _� (corresponding to a velocity gradient
tensor �	� ¼ _��	x��y). The pair potential entering (9)
represents a hard-sphere repulsion

�ðrÞ ¼ 1, r5 d,

0, r4 d:

�
ð12Þ

The situation under consideration is shown schemat-
ically in the second panel of Figure 1. Note that the
zero-shear plane may be located at y¼ 0 without loss
of generality, as only relative particle velocities are
physically relevant.

Application of (6) to treat the specified non-
equilibrium situation immediately reveals the problem
at hand. We have already noted that our chosen
geometry leads to translational invariance of the
equilibrium density distribution within the xz-plane,
�eq(r, t)¼ �eq(y, t). For the shear flow (11) the advec-
tive term in (6) is thus given by

r � ð�ðr, tÞvðr, tÞÞ ¼ r � ð y _��ð y, tÞêxÞ ¼ 0: ð13Þ
Within the advected-DDFT approach the applied
shear flow has no influence on the density profile at
the wall. Equation (6) thus reduces to (4), which, for
the present time-independent external potential, yields
the equilibrium density profile. This disappointing
conclusion contradicts physical intuition and presents
a fundamental failing of Equation (6).

In the right panel of Figure 1 we sketch what we
consider to be the correct physical picture. As a shear
flow is applied parallel to the wall the particles
experience a (nonconservative) force proportional to
their perpendicular separation from the wall. Particles
at different values of y thus seek to move past each
other, perturbing the equilibrium microstructure and
leading, at higher shear rates, to the formation of
particle layers in the xz-plane. In particular, when a
pair of particles collide close to the wall, the particle at
smaller y will be forced against the wall, whereas the
second particle will be forced to roll around its
neighbour in order to follow as closely as possible
the affine solvent flow. These physical mechanisms

should be manifest in the non-equilibrium density
profile.

We note that Brownian dynamics simulations [26]
display two-dimensional particle layering at interme-
diate shear rates, followed by an additional symmetry
breaking in the vorticity direction at high shear rates,
characterized by the formation of particle chains in the
x-direction. It is important to realize that the density
distribution described by DFT represents an average
over all z-coordinates of the particle chains (which, for
an infinite system, are not pinned to a particular
location in z). Our assumption that �(r, t)¼ �(y, t) is
thus fully justified for the present density functional
based study.

4. Mean field theory

In a system without HI, N-particle configurations for
which colloidal particles overlap are forbidden by the
infinitely repulsive colloidal pair potential. While an
exact statistical mechanical treatment (i.e. exact eval-
uation of the integral in (5)) would lend such
unphysical configurations zero statistical weight, care
must be exercised in approximate treatments which do
not fully satisfy this important geometrical constraint.
In the present situation it would appear that applica-
tion of the equilibrium sum rule (5) does not satisfy
exactly the no-overlap ‘core condition’ when applied to
driven states. However, it is not at all clear how to
improve the approximation (5) in a way that both
incorporates the flow induced distortion of �(2)(r1, r2, t)
and enables its weighted integral to be approximated
using an equilibrium free energy functional. For this
reason we take an alternative route and attempt to
include the missing physics by modifying the advective
term in (6). This approach is motivated by considering
the dynamics of hydrodynamically interacting
dispersions.

In a system with HI, the hydrodynamic velocity
entering (8) can be decomposed into affine and particle
induced fluctuation terms viðtÞ ¼ jðtÞ � ri þ vfli ðtÞ, where

(b) (c)(a)

Figure 1. A schematic two-dimensional illustration showing the effect of shear flow on the microstructure of hard spheres at a
hard wall. (a) A typical equilibrium configuration. (b) Shear flow leads to the formation of layers in the xz-plane as particles at
different values of y attempt to overtake each other. (c) Focusing on a binary collision close to the wall. The particle closer to the
wall gets pushed against it, while the colliding particle is forced to ‘roll around’ the other in order to move past.
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vfli ðtÞ can be expressed in terms of the third rank
hydrodynamic resistance tensor [27]. The fluctuation
term describes the disturbance of the affine solvent flow
by the particles and ensures that a pair of approaching
particles ‘flow around’ each other, without coming into
direct contact. The impenetrable character of the
particles, represented by the pair potential (12), thus
enters indirectly by providing a boundary condition for
the solvent flow. Integration of (7) over N� 1 degrees
of freedom yields an advective term

r � �ðr, tÞ½jðtÞ � rþ vflðr, tÞ�, ð14Þ
where vflðr, tÞ � hvfli ðtÞi is the conditional average over
N� 1 coordinates, given that a particle is located at r.
In contrast to (13), the divergence in (14) is not
necessarily zero for the inhomogeneous system pres-
ently under consideration. For hydrodynamically
interacting systems the fluctuation term may thus
provide the desired contribution to the flux in the
y-direction.

The above considerations suggest a possible solu-
tion to the problem posed by (13). By empirically
incorporating a conditionally averaged fluctuation
term into the velocity field driving our Brownian
system, we aim to mimic the hydrodynamic fluctuation
term discussed above. In this way we can correct, at
least to some extent, the occurrence of unphysical
overlaps by enforcing that there be no radial flux
between pairs of particles at contact. We envisage a
system of hard-core particles under shear flow in which
there occur frequent and random binary collisions.
At each collision the particles rotate around each other
according to some specified rule (for our specific
choice, see Section 5 below) before moving apart along
their respective streamlines. For a homogeneous
system, this mechanism gives rise to zero net flux
through any given plane at constant y. However, in the
presence of the external potential field (10), the
inhomogeneous density distribution will lead to a
y-dependent flux which will modify the equilibrium
distribution, until it is balanced by an equal and
opposite diffusive flux, thus establishing a non-
equilibrium steady state.

As the density profile under consideration
varies only in the y-direction, we need only seek the
y-component of the fluctuation contribution. The
arguments presented above thus suggest the mean
field term

vfly ð y, tÞ ¼
Z 1

�1
dy0�ð y0, tÞ �vky ð y� y0Þ, ð15Þ

which expresses the contribution of the density at y0 to
the average velocity at y. The ‘flow kernel’ �vky ð yÞ

entering (15) describes the y-component of the velocity
of a particle which collides with a neighbour at vertical
separation y. Our modified version of (6) thus becomes

@�ðy, tÞ
@t

¼ @

@y

"
� �ðy, tÞvfly ðy, tÞ þPe�1�ðy, tÞ @

@y

�F½�ðy, tÞ�
��ðy, tÞ

#
,

ð16Þ
where we have scaled length using d and time using _�,
leading to an explicit appearance of the Peclet number,
Pe � _�d 2=D0, expressing the competition between
affine advection and diffusive motion. The steady
state solution of (16) is given by

�ð yÞ ¼ z exp ��V extð yÞ þ cð1Þð yÞ þ Pe

Z 1

y

dy0vfly ð y0Þ
� �

,

ð17Þ
where z is the equilibrium fugacity and we have
introduced the one-body direct correlation function [1]

cð1ÞðrÞ ¼ � ��F½�ðr, tÞ�
��ðr, tÞ : ð18Þ

The integral in (17) can be regarded as a non-
equilibrium contribution to the intrinsic chemical
potential. It should be noted that the requirement
that a homogeneous density generates no particle flux
in the y-direction implies that the spatial integral over
vy(y) is zero. For homogeneous states vfly ð y, tÞ is thus
zero and the bulk chemical potential is unchanged
from that in equilibrium.

5. Flow kernel

In order to derive the flow kernel in Equation (15),
we consider the relative velocities of two particles, a
tagged particle with position rt and a reference particle
at rr, during a scattering event, with Dr¼ rt� rr.
As discussed above, we neglect hydrodynamic interac-
tions to keep the description as simple as possible. The
incorporation of hydrodynamic interactions should in
principle be possible in our approach. The following
derivation of the scattering velocities is based on the
assumption that in any situation, the particles adjust
their velocities such that they minimize the friction
with the solvent. The particles are at contact while they
move around each other and then pass each other (see
the right panel of Figure 1). During the contact
period, they have a nonvanishing velocity relative to
the solvent. We will now derive the velocity v

k of the
tagged particle in the frame comoving with the
reference particle, which is assumed to move with
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constant velocity _�yr, i.e. we keep yr fixed. In a real
scattering event one particle would move up and the
other down. In our mean field picture, where the
tagged particle moves in the fixed density distribution
of other particles, we have to keep the y-position of the
reference particle fixed. The velocity with minimal
friction follows from minimization of the velocity
relative to the solvent velocity v, which we denote Dv,

Dv2 ¼ ðvk � vÞ2 ¼ ðvkx � _�DyÞ2 þ vk2y þ vk2z : ð19Þ
As long as the particles are in contact, they move on a
trajectory with constant distance from each other,
leading to

Dr2 ¼ d 2: ð20Þ
Differentiation of this expression and elimination of
Dx leads to

vkx ¼ � vkyDyþ vkzDz

ðd 2 � Dy2 � Dz2Þ1=2 : ð21Þ

Inserting in Equation (19) yields

Dv2 ¼ � vkyDyþ vkzDz

ðd 2 � Dy2 � Dz2Þ1=2 � _�Dy

 !2

þvk2y þ vk2z :

ð22Þ
We can now minimize this expression with respect to vky
and vkz . This yields,

vkyðDy,DzÞ ¼ � _�
Dy
d

� �2

ðd 2 � Dy2 � Dz2Þ1=2: ð23Þ

In order to average this value over all possible values of
Dz, we substitute

Dz ¼ ðd 2 � Dy2Þ1=2 sin�: ð24Þ
into (23) and integrate over � to obtain (the factor of
1/2
 is inserted as normalization, and the range of the
integral is restricted to the half circle since the velocity
is zero for j�j4
/2)

vkyðDyÞ ¼ � 1

2p
_�

Dy
d

� �2

ðd 2 � Dy2Þ1=2
Z p=2

�p=2
d� cos�

¼ � _�

p
Dy
d

� �2

ðd 2 � Dy2Þ1=2: ð25Þ

This result does not account for the density of particles
at contact, relative to that in bulk. In order to include
information about the local microstructure about a
reference particle, the flow distorted inhomogeneous
pair distribution function g(r, y) should, in principle, be
included as a prefactor in (23) before angular integra-
tion. Given that g(r, y) is not known, we make the

zeroth order approximation g(r, y)¼ geq(r), to arrive at

our final result

�vky ðDyÞ ¼ � _�

p
geqðd Þ Dy

d

� �2

ðd 2 � Dy2Þ1=2: ð26Þ

For hard spheres the Carnahan–Starling expression
geq(d )¼ (1��/2)/(1��)3 provides a simple and accu-

rate expression for the contact value [28]. For other
choices of interaction potential geq(d ) may be obtained

using either integral equation methods [29] or, more
consistently, an equilibrium test-particle calculation

employing the same Helmholtz free energy as that used
to generate the dynamics.

6. Excess free energy

Given the equation of motion (16) and flow kernel

(26), we need to specify a particular approximation to
the excess free energy functional in order to arrive at a

closed theory for the density profile. For hard-sphere
fluids the Rosenfeld functional [3] yields accurate

results for both the microstructure and thermodynam-
ics. Within the Rosenfeld approximation the excess

free energy of hard-spheres is given by

F hs
ex½�� ¼ �n0 lnð1� n3Þ þ n1n2 � n1 � n2

1� n3

þ n32 � 3n2ðn2 � n2Þ
24pð1� n3Þ2

, ð27Þ

where the weighted densities are given by convolutions

of the density profile

n	ðrÞ ¼
Z

dr0�ðr0Þ!ð	Þðr� r0Þ: ð28Þ

The weight functions are characteristic of the geometry

of the particles

!ð3ÞðrÞ ¼ Yðr� RÞ,
!ð2ÞðrÞ ¼ �ðr� RÞ,
!ð1ÞðrÞ ¼ �ðr� RÞ

4pR
,

!ð0ÞðrÞ ¼ �ðr� RÞ
4pR2

,

xð2ÞðrÞ ¼ r

r
�ðr� RÞ,

xð1ÞðrÞ ¼ r

r

�ðr� RÞ
4pR

,

ð29Þ

where R¼ d/2 is the sphere radius. Although improved

versions of the Rosenfeld functional do exist [30], the
original version [3] will prove sufficient for the present

application.
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7. Results

7.1. Hard-spheres

We first address the problem of hard spheres at a hard
wall (V ext

w ð yÞ ¼ 0). The steady state Equation (17) was
solved numerically (Picard iteration) using the flow
kernel (26) and the Rosenfeld approximation to the
excess free energy. The contact value of the radial
distribution function employed in (26) was taken from
the Carnahan–Starling equation of state [28].

7.1.1. Intermediate shear rates

In Figure 2 we show density profiles calculated for a
volume fraction �¼ 0.45 at various (low to intermedi-
ate) values of the Peclet number. In equilibrium,
Pe¼ 0, the density profile shows a typical oscillatory
structure arising from local packing constraints at the
wall. Applying a finite Pe leads to an increase in both
the contact value (see inset (a)) and height of the
oscillatory peaks, which is accompanied by an increase
in the depth of the minima. The enhanced structure of
the profile is a direct consequence of the collision
mechanism built into the advective term of our theory
[cf. Figure 1(c)] and indicates the development of
particle layers in non-equilibrium steady states at
finite Pe. Despite the highly structured character of
the non-equilibrium profiles, it should be noted that
the adsorption (i.e. the spatial integral of �(y)� �b)

remains independent of Pe, where �b¼ 6�/
d3 is the
bulk colloid density. While this is a straightforward
consequence of the continuity equation underlying (6),
it nevertheless provides a useful check for our numer-
ical results.

7.1.2. Osmotic pressure

For hard spheres at a hard wall, the contact value of
the density profile satisfies the sum rule

�P ¼ �ðd=2Þ, ð30Þ
where P is the osmotic pressure. While the sum rule
(30) is generally applied to equilibrium, there seems to
be no reason why it should not be equally valid for the
present non-equilibrium situation (although, as far as
we are aware, there currently exists no mathematical
proof of this assertion). Our numerical calculations
show that, for a given volume fraction, the contact
value �(d/2) increases linearly over the entire range of
Peclet numbers investigated (Pe¼ 0! 10 for each
volume fraction considered). Employing the sum rule
(30) we thus find that the numerically obtained osmotic
pressure obeys the following relation

�Pð�,PeÞ ¼ �Peqð�Þ þ 	ð�Þ�2Pe, ð31Þ
where 	(�) is a volume fraction dependent coefficient.

The definition of 	(�) in the second term of (31) is
motivated by the exact low volume fraction results of
Brady and Morris [31]. By solving exactly the pair
Smoluchowski equation in the low density limit for
hard spheres without HI it has been shown that the
osmotic pressure (obtained from the trace of the stress
tensor) is given by

�Pð� ! 0,PeÞ ¼ �b þ 4

3p2
�2Pe: ð32Þ

In inset (b) of Figure 2 we show the volume fraction
dependence of 	. Gratifyingly, the fact that 	 exhibits a
low volume fraction plateau confirms that the present
theory indeed captures the correct scaling (��2Pe) of
the flow induced correction to the osmotic pressure. The
fact that we recover the correct low density scaling is a
nontrivial output of our approach. However, the
limiting value 	(�! 0)¼ 0.164 obtained in the present
work differs from the exact value of 4/3
2¼ 0.135 by a
factor of 1.2. Given the rather severe approximations
employed in the present work, namely the mean-field
term (15) and flow kernel (26), it should not be
surprising that there is some deviation from the exact
result. Nevertheless, the recovery of the correct low
density scaling is reassuring and suggests that perform-
ing calculations with a renormalized Peclet number
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Figure 2. Steady state density profiles of a hard-sphere fluid
at volume fraction �¼ 0.45 for Pe¼ 0, 3.142, 6.283, 9.425
and 12.566. As the Peclet number is increased the oscillatory
structure of the profile becomes more pronounced, reflecting
the formation of particle layers in the xz-plane. Inset (a)
focuses on the region close to the wall, where the contact
value �(d/2) increases linearly with Pe. Inset (b) shows the
density dependence of the coefficient determining the non-
equilibrium contribution to the reduced osmotic pressure
��ne(�,Pe)¼	(�)�2 Pe, as determined from the contact
value.
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Pe*¼Pe/1.2 may be appropriate, should a detailed
comparison with simulation or experiment be required.

We note that time-dependent solutions of (16) (not
considered in the present work) would enable study of
the transient behaviour of the osmotic pressure result-
ing from time-dependent changes in the applied shear
flow, e.g. the onset of steady shear flow [32].

7.1.3. Laning transition

Turning now to higher values of Pe, we show in
Figure 3 density profiles for �¼ 0.42 and Pe¼
16.695! 18.221, focusing on the layering structure
away from the direct vicinity of the wall (the region
y45 is shown). As Pe is increased from zero to values
around 17.6 the oscillatory structure shows an increas-
ingly slow decay with distance from the wall, indicating
that Brownian motion is gradually succumbing to the
influence of the applied shear flow. For Pe417.6 the

decay length of the oscillatory profiles shows a strong
sensitivity to variations in the Peclet number and
diverges at a critical value Pecrit� 17.8. This divergence
signifies the onset of an ordered phase for which the
asymptotic density profile is characterized by a well-
defined period and amplitude of oscillation.

The emergence of an infinitely extended oscillatory
profile at a critical value of the Peclet number is a
nontrivial prediction of the present theory and signifies
a non-equilibrium transition to an inhomogeneous
steady state. Such layered states have been observed in
Brownian dynamics simulations [33] but have thus far
remained inaccessible to microscopically based theories
(with the exception of [*]). For Pe4Pecrit it is of
interest to look at the structure of the individual
oscillations within the layered phase. In the inset to
Figure 3 we show a single density peak at y� 51.4 for
Pe¼ 17.907 and 18.221. For larger values of Pe the
peak becomes both narrower and higher, reflecting the
reduced influence of Brownian motion, which acts to
damp the oscillations and restore equilibrium. The
density peaks in the layering region may be well
approximated by a Gaussian, implying the existence of
two-dimensional particle planes at high Pe values, with
harmonic restoring forces acting against random out-
of-plane fluctuations.

Shear-induced layering phases, similar to those
predicted by the present theory, have been observed in
both colloidal experiments [34–38] and Brownian
dynamics simulations of hard-sphere dispersions [33].
More recently, experiments on noncolloidal disper-
sions (no Brownian motion) under oscillatory shear
have shown that the presence of irreversible processes
when the particles collide can give rise to self-
organization and the formation of particle lanes [39].

7.1.4. Phase diagram

The oscillation amplitude of the density in the limit
y!1 serves as an order parameter characterizing the
non-equilibrium transition from a locally layered
state, homogeneous in bulk, to a fully macroscopic
layered phase. Specifically, W�max(�(y!1))�
min(�(y!1)) provides a suitable order parameter
(see Figure 3). In Figure 4 we show the non-equilibrium
phase diagram in the (�,Pe) plane, obtained by
examination of W as a function of Pe. For each
volume fraction density profiles were calculated on a
large grid extending beyond 300 particle diameters. For
Pe5Pecrit the converged profiles clearly decay to zero
as a function of y, well within our sample size (as for the
profiles for Pe¼ 16.965, 17.279 and 17.593 in Figure 3).
For Pe4Pecrit iteration of Equation (17) results in a
‘laning region’ which grows out from the wall
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Pe = 17.593

Pe = 17.907
Ordering transition at Pecrit ≈ 17.8

Increasing
Pe

Pe = 18.221

W

Figure 3. Steady state density profiles for volume fraction
�¼ 0.42 at Pe¼ 16.965, 17.279, 17.593, 17.907 and 18.221.
For clarity the profiles have been translated vertically. As Pe
is increased the profiles display an increasingly slow oscilla-
tory decay to the bulk density. At a critical value of
Pe¼Pecrit the Brownian motion is no longer able to restore
the equilibrium structure far from the wall and shear effects
dominate. For Pe4Pecrit the oscillations no longer decay and
the entire sample enters a layered state, characterized by a
well-defined oscillation amplitude. The width of the laning
oscillations away from the wall (and which extend through-
out the entire sample) defines an order parameter W
characterizing the non-equilibrium transition. The inset
focuses on a single peak (�¼ 0.42) within the layering
region for Pe¼ 17.907 and 18.221. The layering peaks can be
well approximated by a Gaussian.
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indefinitely until the laning structure covers the entire
range of the numerical grid. The value of W for laning
states may thus be operationally defined as the density
difference between the minina and maxima of the
oscillations at a distance sufficiently far removed from
the wall. In practice, W was estimated from the
variation of the profile around y¼ 150. The inset to
Figure 4 shows W as a function of Pe for �¼ 0.42,
following the path indicated by an arrow in the main
figure. For values of Pe close to, but above, the
transition, W is well described by a square root.

The phase diagram shown in Figure 4 is consistent
with that calculated in Brownian dynamics simulations
of charge stabilized colloidal dispersions (see Figure 4
in [40]), provided that the temperature used in the
simulation study is identified as an inverse volume
fraction. In [40] temperatures both above and below
the equilibrium freezing transition were considered and
the non-equilibrium order–disorder phase boundary
found to vary continuously through the freezing
transition. In the present study we prefer to restrict
ourselves to volume fractions below freezing
(�fr¼ 0.494) in order to avoid the possible complica-
tions which may arise from the presence of underlying
metastable states. A serious study of the complex
interaction between crystal nucleation and external
flow goes beyond the scope of the present work.

Finally, we note that the value Pecrit¼ 14.7 obtained
from the present theory for �¼ 0.45 is remarkably
consistent with Brownian dynamics simulations per-
formed at the same volume fraction (cf. Figure 3

in [33]). The simulations predict that a layered structure
emerges within the range Pe¼ 10! 30.

7.1.5. Bulk laning

The results presented in the previous section indicate
that the presence of the dynamical mean field term in
(17) gives rise to an instability with respect to laning
when the Peclet number exceeds a certain critical value.
Although we have concentrated on the particular
problem of particles at a hard wall, it would appear
that the density inhomogeneities induced by the wall
simply serve to ‘seed’ the generation of a laning
structure for Pe4Pecrit. It may thus be anticipated
that for supercritical values of Pe, any kind of density
fluctuation, regardless of its amplitude, will be suffi-
cient to initiate laning.

In order to test the above hypothesis we have
solved (17) for a range of Pe numbers using the
following initial guess for numerical iterative solution

�initð yÞ ¼ �b þ a expð�bð y� y0Þ2Þ, ð33Þ
for various values of the parameters a, b and y0. For
Pe5Pecrit the perturbation is eroded during the
iteration procedure and yields the steady state solution
�(y)¼ �b for all values of the parameter set (a, b, y0).
For Pe4Pecrit any finite value of the parameter a is
sufficient to seed the laning and a fully laned steady
state solution, extending over the entire numerical
sample length, is obtained, regardless of the values of
b and y0 employed. In this sense, it would appear that,
for supercritical states, any amount of ‘numerical dirt’
in the initial homogeneous density distribution is
sufficient to generate a fully laned steady state.
Moreover, we have confirmed that the values of
Pecrit thus obtained are entirely consistent with the
phase boundary shown in Figure 4, which was calcu-
lated in the presence of a hard wall. Given the above
observations it would be of interest to perform a fully
time-dependent solution of (16). Such a calculation,
which we defer to a future publication, would also
enable predictions to be made regarding the timescale
upon which lanes are formed and its dependence upon
the supersaturation Pe�Pecrit.

7.2. Influence of gravity

We now consider adding an extra component to the
external potential

V ext
w ð yÞ ¼ ygDm, ð34Þ

where Dm is the buoyant mass of a colloid and g is the
gravitational field strength. We thus address the
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Figure 4. The phase boundary in the (�,Pe) plane separating
the disordered phase from the ordered ‘laning’ phase (lines
serve as a guide for the eye between calculated data points).
The hard-sphere freezing transition at �¼ 0.494 is indicated
by the broken line. The inset shows the order parameter W as
a function of Pe for �¼ 0.42, following the path indicated by
the blue arrow in the main panel. Above Pecrit the numerical
data suggests a continuous transition with the order param-
eter varying as W� (Pe�Pecrit)

1/2 for small Pe�Pecrit.
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influence of the shear flow (11) upon colloidal

sedimentation profiles. Choosing a fugacity z¼ 1.5

and gravitational length �¼ kBT/gDm¼ 20 yields the
equilibrium sedimentation profile shown in Figure 5,

for which the local volume fraction remains rather low,

even in the vicinity of the wall. As y increases, the local
packing oscillations give way to a monotonic decrease

of the density. It may thus be anticipated that for finite

values of Pe, the flow kernel built into our mean-field
theory will lead to a net transport of particles from

regions of high density to regions of lower density until

the scattering flux is balanced by the gravity-biased
diffusion of particles towards smaller y values.

The expectation of flow induced broadening of the

sedimentation profiles is confirmed by the steady state
results shown in Figure 5. Note that the particle

number (i.e. area under each of the curves in Figure 5)

is conserved and is independent of Pe. The canonical
nature of the DDFT imposes that the broadening of

the sedimentation profile with increasing Pe is accom-

panied by an overall decrease in the local density
within the range 05y540. It is interesting to consider

this change of the density distribution in view of the

recently discussed violation of the fluctuation dissipa-
tion theorem (FDT) [41,42] in sheared systems. This

violation was expressed in terms of the fluctuation
dissipation ratio XFDT,f defined as the ratio of response

and thermal fluctuations for observable f (see, e.g. [41]

for details). In equilibrium, one has XFDT,f¼ 1, while
under shear, XFDT,f51 is observed. Since, by defini-
tion, the ratio XFDT,f is proportional to (kBT)

�1 (when
keeping response and fluctuations T-independent), one
can also describe the FDT violation in terms of an
effective temperature TFDT,f¼T/XFDT,f which in turn
is larger than T [42]. (Note that the dependence of
XFDT,f, and hence TFDT,f, on observable f is unclear.)
Here, we are tempted to define in analogy the centre-
of-mass ratio Xcom,

Xcom ¼ �yð0Þ
�yð _�Þ , ð35Þ

with �yð _�Þ the centre of mass of the density distribution
at shear rate _�,

�y ¼
R1
0 dyy�ð yÞR1
0 dy�ð yÞ : ð36Þ

At low density, �(y)/ exp[�y/�] and �y ¼ � / kBT,
independent of shear. At higher density, � in Figure 5
does not follow a simple exponential, but one still
expects �yð0Þ / kBT, as long as packing effects are not
too dominant. This confirms the close analogy of our
definition of Xcom to XFDT,f: if for the system under
shear, the ratio Xcom will be smaller than unity, one can
formally interpret this in terms of an effective temper-
ature larger than T. Inset (a) to Figure 5 shows that the
centre of mass under shear is indeed larger than in
equilibrium, i.e. we indeed have Xcom51 in accordance
with the findings for the ratio XFDT,f. The decrease of
Xcom as a function of shear rate resembles the behaviour
of XFDT,f, which was also found to decrease with shear
rate [41,42]. We furthermore expect that Xcom decreases
with density and note Xcom! 1 for �! 0 (where
�yð _�Þ ! �), as observed for XFDT,f. The centre-of-mass
ratio hence shows the same overall properties as the
fluctuation–dissipation ratio. This suggests that both
are driven by similar physical processes. These findings
are also interesting in view of efforts towards a
thermodynamic definition of an effective temperature
of the system under shear [43]. We realize that a com-
parison of the concrete values of Xcom and XFDT,f is not
possible since the system under gravity is different from
the bulk systems studied in [41–43], as the density
depends both on y and _�. Future work on a single
tagged heavy particle in a bath of density matched
particles might prove more useful in this respect.

Despite the broadening of the profiles as a function
of Pe, the ultimate asymptotic decay can always be
fitted by a Boltzmann decay, �(y!1)� exp(�y/�).
This is expected since the density far away from the
wall is low and %(y) hence approaches the Boltzmann
distribution.
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Figure 5. Steady state sedimentation profiles of a relatively
dilute dispersion for Pe¼ 0, 31.416, 62.832, 103.673 and
125.664 at a fixed value of the gravitational length kBT/
gDm¼ 20. The black curve corresponds to Pe¼ 0 and is
obtained from a static DFT calculation at a fugacity z¼ 1.5.
Due to the conservation equation underlying our DDFT,
steady state profiles at finite Pe have the same adsorption as
the profile for Pe¼ 0, i.e. particle number is conserved. Inset
(a) shows the centre of mass �y [see Equation (36)] as a
function of Pe. Inset (b) focuses on the region close to the
wall and demonstrates the fact that the contact value is
independent of Pe.
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The inset to Figure 5 focuses on the region
0.55y53. Despite the major changes in density
distribution induced by the applied shear flow, it is
striking that the contact value �(d/2) remains indepen-
dent of Pe, in contrast to our previous findings at g¼ 0
(see Figures 2 and 3). This is not surprising. For any
finite g, the steady state density profile has an
adsorption G � R1

0 dy�ð yÞ corresponding to the aver-
age number of particles in a column in the y-direction
with unit area in the xz-plane. In a gravitational field
this column of particles thus exerts a force GgDm on
the wall and determines the contact value of the density
distribution. As particle number is conserved within
the DDFT, it follows that the contact value of the
density at the wall will be independent of Pe, as
observed in our numerical solutions. The fact that the
variation in contact value as a function of Pe is
distinctly different for the two cases Pe¼ 0 and Pe 6¼ 0
is related to the singular behaviour of �(y!1) in the
limit g! 0.

Figure 6 shows further sedimentation profiles for a
state with �¼ 10 and larger local volume fraction than
those shown in Figure 5. As previously, the profiles
broaden with increasing Pe. Due to high local density
in the vicinity of the wall, it may be expected that the
layering transition identified in our calculations at
g¼ 0 may become relevant at sufficiently high Pe
values. The profile at the highest Pe value shown in
Figure 6 (Pe¼ 15) does indeed show the development
of a layering structure close to the wall, similar to that
in Figure 2. However, the gravitational force acting on
the particles suppresses the development of long range

oscillations and disrupts the formation of a macro-
scopic layering phase at any finite value of Pe. As for
the profiles shown in Figure 5, the contact value at the
wall remains independent of Pe over the range of
parameters investigated.

8. Discussion

We have applied dynamical density functional theory
to calculate the density profiles of a colloidal liquid at a
wall under shear flow. The chosen flow geometry
served to highlight failings of the existing DDFT
approach to driven states and a semi-empirical correc-
tion was proposed to reintroduce the missing physical
mechanism. Calculations performed at various volume
fractions and Peclet numbers have revealed that the
new approximation captures a non-equilibrium phase
transition to an ordered laning state, for shear rates
above a critical value of Pe. Moreover, sedimentation
profiles are dramatically altered by the application of
shear flow, which leads to an increase in height of the
colloidal centre of mass with increasing shear rate. The
behaviour of the centre-of-mass ratio Xcom is in
qualitative agreement with the previously studied
fluctuation–dissipation ratio under shear. The study
of a single tagged heavy particle in a bath of density
matched particles might be an interesting variant for
the future.

The mean-field correction to the advection term is
presently rather empirical in character, arrived at using
physical arguments, and it would be desirable to place
this on a more rigorous basis, ideally as part of a
systematic scheme for improving the DDFT under
external flow. Whether this is possible remains to be
seen. In some sense, the present state of the theory for
driven states is reminiscent of the early days of
equilibrium DFT, for which the first attempts to go
beyond the local density or square gradient approxi-
mation relied on the introduction of empirical weight
functions to incorporate spatial nonlocality [2]. The
insight gained from these studies proved very useful for
the development of subsequent nonlocal approaches
with a better foundation in statistical mechanics.
We thus hope that the present work may provide
stimulus for further developments in applying DDFT
to driven non-equilibrium states.

The physical ‘scattering’ mechanism built into the
present theory generates a nontrivial coupling between
density inhomogeneities and external flow, but has no
effect on systems with a homogeneous density distri-
bution. While this is likely to be appropriate for certain
colloidal systems, it may represent an approximation
for others. Imposing shear flow on a homogeneous
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Figure 6. Steady state sedimentation profiles of a dense
dispersion for Pe¼ 2, 4, 6 and 15 and at separations removed
from the wall. The inset shows the local structure close to the
wall. Although some local layering can be induced close to
the wall at high shear rates, the gravitational force suppresses
the development of an extended layering phase. As in
Figure 5, the contact value remains independent of Pe.
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dispersion generally leads to the development of finite
normal stresses, which have been associated with the
phenomenon of shear-induced particle migration [44].
It is thus conceivable that a shear-induced drift of
particles to regions of lower shear rate could result in a
density gradient through the sample. Very recent
experiments on PMMA hard-sphere-like colloids sug-
gest that flow-concentration coupling can lead to a
novel form of shear banding [45]. However, the banding
reported in [45] only occurs for volume fractions above
the glass transition, whereas the present work is focused
purely on colloidal liquid states.

Both the standard form of DDFT (4) and its
advected extension (6) are based on an implicit
adiabatic assumption which neglects the time taken
for the (one-time) pair correlation functions to equil-
ibrate following a change in the average density profile.
It may thus be anticipated that in very dense systems,
for which the structural 	-relaxation time becomes
important, the pair correlation functions will be unable
to keep up with changes in the density, leading to a
breakdown of the adiabatic approximation. The fact
that the structural relaxation time of driven dense
states is determined by the inverse flow rate _��1 (at
least for states with _��1 5 �	) raises the interesting
possibility that the adiabatic approximation may be
more accurate when applied to calculate the response
of dense systems to time-dependent changes in flow
rate than to time-dependent changes in external
potential. The present work has focused on steady
state response and the next step in our research
program will be to extend our studies to treat time-
dependent shear flow.

An important simplification of the present treat-
ment is that hydrodynamic interactions have been
neglected. This excludes from the outset the develop-
ment of the hydrodynamically bound clusters which
may form at very high shear rates and which have been
suggested as a possible mechanism for shear thickening
[46]. As we focus here on the low and intermediate
Peclet numbers characteristic of the onset of shear
thinning, this omission should not be too severe. More
fundamental is the fact that the ordered phase
observed in Brownian dynamics simulations [33] and
captured by the present theory is apparently absent in
Stokesian dynamics simulations including the full
solvent hydrodynamics [47]. It would thus appear
that hydrodynamic interactions can render the ordered
phase unstable. Nevertheless, we consider it important
that any prospective theory of driven colloids be able
to describe first the simpler case of interacting
Brownian particles, before seeking to refine this to
include hydrodynamics at some level. While it may well
be that the (approximate) incorporation of

hydrodynamic interactions into the theory disrupts
the laning behaviour reported here, we can at least be
sure that such an improved theory has a sound physical
basis and that the laning observed in Brownian
dynamics [33] will indeed emerge should we choose
to switch-off the hydrodynamics. Such a gradual
theoretical development, adding new physical aspects
step by step, is important in developing a robust theory
and tackling the fully hydrodynamic problem from the
outset would be unlikely to deliver this.
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[12] M. Rex and H. Löwen, Phys. Rev. Lett. 101, 148302

(2008).
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