47 research outputs found

    Algorithmen für Topologiebewusstsein in Sensornetzen

    Get PDF
    This work deals with algorithmic and geometric challenges in wireless sensor networks (WSNs). Classical algorithm theory, with a single processor executing one sequential program while having access to the complete data of the problem at hand, does not suit the needs of WSNs. Instead, we need distributed protocols where nodes collaboratively solve problems that are too complex for a single node. First we analyze a location problem, where the nodes obtain a sense of the network topology and their position in it. Computing coordinates in a global coordinate system is NP-hard in almost all relevant variants. So we present a completely new approach instead. The network builds clusters and constructs an abstract graph that closely reflects the topology of the network region. The resulting topology awareness suits the needs of some applications much better than the coordinate-based approach. In the second part, we present a novel flow problem, which adds battery constraints to dynamic network flows. Given a time horizon, we seek a flow from source to sink that maximizes the total amount of delivered data. As there is no prior work on this problem, we also analyze it in a centralized setting. We prove complexity results for several variants and present approximation schemes. The third part introduces the WSN simulator Shawn. By letting the user choose among different geometric communication models and data structures for the resulting graph, Shawn can adapt to many different setups, including mobile ones. Due to its design, Shawn is much faster than comparable simulation environments.Die vorliegende Arbeit beschäftigt sich mit algorithmischen und geometrischen Fragestellungen in Sensornetzwerken. Im Gegensatz zur klassischen Algorithmik, bei der ein einzelner Prozessor sequenziell Anweisungen abarbeitet und vollen Zugriff auf die Probleminstanz hat, werden hier verteilte Protokolle benötigt, bei denen die Knoten gemeinsam eine Aufgabe bewältigen, zu der sie allein nicht in der Lage wären. Zuerst untersuchen wir das grundlegende Problem, wie Sensorknoten ein Bewusstsein für ihre Position erlangen können. Motiviert daraus, dass das Problem, Koordinaten für ein globales Koordinatensystem zu bestimmen, in fast allen Varianten NP-schwer ist, wird ein vollkommen neuer Ansatz skizziert, bei dem das Netzwerk selbständig geometrische Cluster bildet und einen abstrakten Graphen konstruiert, der die Topologie des zugrunde liegenden Gebiets sehr genau widerspiegelt. Das sich daraus ergebende Positionsbewusstsein ist für einige Anwendungen dem klassischen euklidischen Ansatz deutlich überlegen. Der zweite Teil widmet sich einem Flussproblems für Sensornetzwerke, dass klassische dynamische Flüsse um Batteriebeschränkungen erweitert. Gesucht ist ein Fluss, der für gegebenen Zeithorizont die Datenmenge maximiert, die von einer Quelle zur Senke geschickt werden kann. Dieses Problem wird auch im zentralisierten Modell untersucht, da keine Vorarbeiten existieren. Wir beweisen Komplexitäten von Problemvarianten und entwickeln Approximationsschemata. Der dritte Teil stellt den Netzwerksimulator Shawn vor. Da der Benutzer zwischen verschiedenen geometrischen Kommunikationsmodellen wählen kann und das Speichermodell für den daraus resultierenden Graphen an den verfügbaren Speicher sowie an Simulationsparameter wie eventuell mögliche Mobilität der Knoten anpassen kann, ist Shawn hochflexibel und gleichzeitig deutlich schneller als vergleichbare Simulationsumgebungen

    Self-synchronized duty-cycling for sensor networks with energy harvesting capabilities: Implementation in Wiselib

    Get PDF
    In this work we present a protocol for a self- synchronized duty-cycling mechanism in wireless sensor net- works with energy harvesting capabilities. The protocol is im- plemented in Wiselib, a library of generic algorithms for sensor networks. Simulations are conducted with the sensor network simulator Shawn. They are based on the specifications of real hardware known as iSense sensor nodes. The experimental results show that the proposed mechanism is able to adapt to changing energy availabilities. Moreover, it is shown that the system is very robust against packet loss.Postprint (published version

    Exploration via Structured Triangulation by a Multi-Robot System with Bearing-Only Low-Resolution Sensors

    Full text link
    This paper presents a distributed approach for exploring and triangulating an unknown region using a multi- robot system. The objective is to produce a covering of an unknown workspace by a fixed number of robots such that the covered region is maximized, solving the Maximum Area Triangulation Problem (MATP). The resulting triangulation is a physical data structure that is a compact representation of the workspace; it contains distributed knowledge of each triangle, adjacent triangles, and the dual graph of the workspace. Algorithms can store information in this physical data structure, such as a routing table for robot navigation Our algorithm builds a triangulation in a closed environment, starting from a single location. It provides coverage with a breadth-first search pattern and completeness guarantees. We show the computational and communication requirements to build and maintain the triangulation and its dual graph are small. Finally, we present a physical navigation algorithm that uses the dual graph, and show that the resulting path lengths are within a constant factor of the shortest-path Euclidean distance. We validate our theoretical results with experiments on triangulating a region with a system of low-cost robots. Analysis of the resulting quality of the triangulation shows that most of the triangles are of high quality, and cover a large area. Implementation of the triangulation, dual graph, and navigation all use communication messages of fixed size, and are a practical solution for large populations of low-cost robots.Comment: 8 pages, 11 figures. To appear in ICRA 201

    Altered psychobiological reactivity but no impairment of emotion recognition following stress in adolescents with non-suicidal self-injury.

    Get PDF
    Impairments in both stress regulation and emotion recognition have been associated with borderline personality disorder (BPD) and non-suicidal self-injury (NSSI). Although it has been proposed that emotion recognition deficits particularly emerge during stress, this hypothesis has not been fully investigated. Adolescents with and without NSSI performed emotion recognition tasks before and after the employment of the Trier Social Stress Test (TSST). The psychobiological stress response was captured with psychological self-reports (affect, stress and dissociation), physiological recordings (heart rate, HR, and heart rate variability, HRV) and endocrinological sampling of saliva (cortisol and alpha-amylase). Mixed-linear models were applied to analyze stress-induced changes in emotion recognition performance and respective stress response measures. The TSST elicited altered psychobiological stress responses in adolescents with NSSI: A more pronounced decrease in positive affect, a more pronounced increase in negative affect, a less pronounced increase in HR, a less pronounced decrease in HRV and a more pronounced increase in alpha-amylase throughout the stress induction than adolescents without NSSI. Stress responses (dissociation, negative affect, cortisol and HR) differed as a function of BPD severity on a continuum, illustrating greater reactivity on self-reports but decreased biological responsiveness in those with greater BPD severity. Stress induction had similar effects on emotion recognition in adolescents with and without NSSI. Recognition sensitivity and recognition speed equally increased, in the absence of any differences in recognition accuracy. In contrast to prominent propositions, psychosocial stress does not appear to account for impaired emotion recognition across the BPD spectrum

    The Minimum Backlog Problem

    Full text link
    We study the minimum backlog problem (MBP). This online problem arises, e.g., in the context of sensor networks. We focus on two main variants of MBP. The discrete MBP is a 2-person game played on a graph G=(V,E)G=(V,E). The player is initially located at a vertex of the graph. In each time step, the adversary pours a total of one unit of water into cups that are located on the vertices of the graph, arbitrarily distributing the water among the cups. The player then moves from her current vertex to an adjacent vertex and empties the cup at that vertex. The player's objective is to minimize the backlog, i.e., the maximum amount of water in any cup at any time. The geometric MBP is a continuous-time version of the MBP: the cups are points in the two-dimensional plane, the adversary pours water continuously at a constant rate, and the player moves in the plane with unit speed. Again, the player's objective is to minimize the backlog. We show that the competitive ratio of any algorithm for the MBP has a lower bound of Ω(D)\Omega(D), where DD is the diameter of the graph (for the discrete MBP) or the diameter of the point set (for the geometric MBP). Therefore we focus on determining a strategy for the player that guarantees a uniform upper bound on the absolute value of the backlog. For the absolute value of the backlog there is a trivial lower bound of Ω(D)\Omega(D), and the deamortization analysis of Dietz and Sleator gives an upper bound of O(DlogN)O(D\log N) for NN cups. Our main result is a tight upper bound for the geometric MBP: we show that there is a strategy for the player that guarantees a backlog of O(D)O(D), independently of the number of cups.Comment: 1+16 pages, 3 figure
    corecore