244 research outputs found

    High-intracavity-power thin-disk laser for the alignment of molecules

    Full text link
    We propose a novel approach for strong alignment of gas-phase molecules for experiments at arbitrary repetition rates. A high-intracavity-power continuous-wave laser will provide the necessary ac electric field of  ⁣1010\!10^{10}- 1011 W/cm210^{11}~\text{W}/\text{cm}^2. We demonstrate thin-disk lasers based on Yb:YAG and Yb:Lu2_2O3_3 in a linear high-finesse resonator providing intracavity power levels in excess of 100~kW at pump power levels on the order of 50~W. The multi-longitudinal-mode operation of this laser avoids spatial-hole burning even in a linear standing-wave resonator. The system will be scaled up as in-vacuum system to allow for the generation of fields of 1011 W/cm210^{11}~\text{W}/\text{cm}^2. This system will be directly applicable for experiments at modern X-ray light sources, such as synchrotrons or free-electron lasers, which operate at various very high repetition rates. This would allow to record molecular movies through temporally resolved diffractive imaging of fixed-in-space molecules, as well as the spectroscopic investigation of combined X-ray-NIR strong-field effects of atomic and molecular systems

    Kerr-lens mode-locked Tm^3+:Sc_2O_3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611  nm

    Get PDF
    We demonstrate a Kerr-lens mode-locked Tm3+:Sc2O3single-crystal laser in-band pumped by an Er3+:Yb3+ fiber master oscillator power amplifier at 1611 nm. Pulses as short as 166 fs with an average output power of 440 mW are obtained. The spectral bandwidth and center wavelength are 29.3 and 2124 nm, respectively. At a longer pulse duration of 298 fs, we obtain 1 W of average output power. The repetition rate is 95 MHz, and the conversion efficiency against the absorbed pump power is as high as 47%. To the best of our knowledge, this is the first Kerr-lens mode-locked Tm3+-doped solid state laser

    Schalentragwerke mit funktionaler Gradierung

    Get PDF
    Betone für schlanke Schalentragwerke weisen zur Sicherstellung ausreichender Zugfestigkeiten oft einen hohen Stahlfasergehalt auf. Dies ist mit hohen ökologischen und monetären Kosten verbunden. Das Ziel war es daher, die Voraussetzungen für die Herstellung effizienter Schalentragwerke aus funktional fasergradierten Betonfertigteilen zu schaffen.Concrete for slender load-bearing shell structures often has a high steel fibre content to ensure sufficient tensile strength. This is associated with high ecological and financial costs. Thus, the aim of this project was to create the prerequisites for the production of efficient shell structures made of functional fibre-graded precast concrete elements

    Yellow laser performance of Dy3+^{3+} in co-doped Dy,Tb:LiLuF4_4

    Full text link
    We present laser results obtained from a Dy3+^{3+}-Tb3+^{3+} co-doped LiLuF4_{4} crystal, pumped by a blue emitting InGaN laser diode, aiming for the generation of a compact 578 nm source. We exploit the yellow Dy3+^{3+} transition 4^{4}F9/2_{9/2} \Longrightarrow 6^{6}H13/2_{13/2} to generate yellow laser emission. The lifetime of the lower laser level is quenched via energy transfer to co-doped Tb3+^{3+} ions in the fluoride crystal. We report the growth technique, spectroscopic study and room temperature continuous wave (cw) laser results in a hemispherical cavity at 574 nm and with a highly reflective output coupler at 578 nm. A yellow laser at 578 nm is very relevant for metrological applications, in particular for pumping of the forbidden 1^{1}S03_{0} \Longrightarrow ^{3}P0_{0} Ytterbium clock transition, which is recommended as a secondary representation of the second in the international system (SI) of units. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.39.006628. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Comment: 8 pages, 5 figure

    Effect of Pre-Shear on Agglomeration and Rheological Parameters of Cement Paste

    Get PDF
    Cementitious pastes are multiphase suspensions that are rheologically characterized by viscosity and yield stress. They tend to flocculate during rest due to attractive interparticle forces, and desagglomerate when shear is induced. The shear history, e.g., mixing energy and time, determines the apparent state of flocculation and accordingly the particle size distribution of the cement in the suspension, which itself affects suspension's plastic viscosity and yield stress. Thus, it is crucial to understand the effect of the mixing procedure of cementitious suspensions before starting rheological measurements. However, the measurement of the in-situ particle agglomeration status is difficult, due to rapidly changing particle network structuration. The focused beam reflectance measurement (FBRM) technique offers an opportunity for the in-situ investigation of the chord length distribution. This enables to detect the state of flocculation of the particles during shear. Cementitious pastes differing in their solid fraction and superplasticizer content were analyzed after various pre-shear histories, i.e., mixing times. Yield stress and viscosity were measured in a parallel-plate-rheometer and related to in-situ measurements of the chord length distribution with the FBRM-probe to characterize the agglomeration status. With increasing mixing time agglomerates were increasingly broken up in dependence of pre-shear: After 300 s of pre-shear the agglomerate sizes decreased by 10 µm to 15 µm compared to a 30 s pre-shear. At the same time dynamic yield stress and viscosity decreased up to 30% until a state of equilibrium was almost reached. The investigations show a correlation between mean chord length and the corresponding rheological parameters affected by the duration of pre-shear

    A diffuse interface model for quasi-incompressible flows: Sharp interface limits and numerics

    Get PDF
    In this contribution, we investigate a diffuse interface model for quasi-incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn-Hilliard equation numerically by a Local Discontinuous Galerkin scheme

    Distinct Kinin-Induced Functions Are Altered in Circulating Cells of Young Type 1 Diabetic Patients

    Get PDF
    We aimed to understand early alterations in kinin-mediated migration of circulating angio-supportive cells and dysfunction of kinin-sensitive cells in type-1 diabetic (T1D) patients before the onset of cardiovascular disease.Total mononuclear cells (MNC) were isolated from peripheral blood of 28 T1D patients free from cardiovascular complications except mild background retinopathy (age: 34.8+/-1.6 years, HbA(1C): 7.9+/-0.2%) and 28 age- and sex-matched non-diabetic controls (H). We tested expression of kinin receptors by flow cytometry and migratory capacity of circulating monocytes and progenitor cells towards bradykinin (BK) in transwell migration assays. MNC migrating towards BK (BK(mig)) were assessed for capacity to support endothelial cell function in a matrigel assay, as well as generation of nitric oxide (NO) and superoxide (O(2) (-)*) by using the fluorescent probes diaminofluorescein and dihydroethidium.CD14(hi)CD16(neg), CD14(hi)CD16(pos) and CD14(lo)CD16(pos) monocytes and circulating CD34(pos) progenitor cells did not differ between T1D and H subjects in their kinin receptor expression and migration towards BK. T1D BK(mig) failed to generate NO upon BK stimulation and supported endothelial cell network formation less efficiently than H BK(mig). In contrast, O(2) (-)* production was similar between groups. High glucose disturbed BK-induced NO generation by MNC-derived cultured angiogenic cells.Our data point out alterations in kinin-mediated functions of circulating MNC from T1D patients, occurring before manifest macrovascular damage or progressed microvascular disease. Functional defects of MNC recruited to the vessel wall might compromise endothelial maintenance, initially without actively promoting endothelial damage, but rather by lacking supportive contribution to endothelial regeneration and healing
    corecore