3,818 research outputs found

    The Degrees of Freedom of Partial Least Squares Regression

    Get PDF
    The derivation of statistical properties for Partial Least Squares regression can be a challenging task. The reason is that the construction of latent components from the predictor variables also depends on the response variable. While this typically leads to good performance and interpretable models in practice, it makes the statistical analysis more involved. In this work, we study the intrinsic complexity of Partial Least Squares Regression. Our contribution is an unbiased estimate of its Degrees of Freedom. It is defined as the trace of the first derivative of the fitted values, seen as a function of the response. We establish two equivalent representations that rely on the close connection of Partial Least Squares to matrix decompositions and Krylov subspace techniques. We show that the Degrees of Freedom depend on the collinearity of the predictor variables: The lower the collinearity is, the higher the Degrees of Freedom are. In particular, they are typically higher than the naive approach that defines the Degrees of Freedom as the number of components. Further, we illustrate how the Degrees of Freedom approach can be used for the comparison of different regression methods. In the experimental section, we show that our Degrees of Freedom estimate in combination with information criteria is useful for model selection.Comment: to appear in the Journal of the American Statistical Associatio

    Can effects of quantum gravity be observed in the cosmic microwave background?

    Full text link
    We investigate the question whether small quantum-gravitational effects can be observed in the anisotropy spectrum of the cosmic microwave background radiation. An observation of such an effect is needed in order to discriminate between different approaches to quantum gravity. Using canonical quantum gravity with the Wheeler-DeWitt equation, we find a suppression of power at large scales. Current observations only lead to an upper bound on the energy scale of inflation, but the framework is general enough to study other situations in which such effects might indeed be seen.Comment: 5 pages, 1 figure, essay awarded first prize in the Gravity Research Foundation essay competition 201

    Parametric excitation of a Bose-Einstein condensate in a 1D optical lattice

    Full text link
    We study the response of a Bose-Einstein condensate to a periodic modulation of the depth of an optical lattice. Using Gross-Pitaevskii theory, we show that a modulation at frequency Omega drives the parametric excitation of Bogoliubov modes with frequency Omega/2. The ensuing nonlinear dynamics leads to a rapid broadening of the momentum distribution and a consequent large increase of the condensate size after free expansion. We show that this process does not require the presence of a large condensate depletion. Our results reproduce the main features of the spectrum measured in the superfluid phase by Stoeferle et al., Phys. Rev. Lett. 92, 130403 (2004).Comment: 4 pages, 4 figures, more results added, to appear in PRA Rapid Communication

    Dependence of the BEC transition temperature on interaction strength: a perturbative analysis

    Full text link
    We compute the critical temperature T_c of a weakly interacting uniform Bose gas in the canonical ensemble, extending the criterion of condensation provided by the counting statistics for the uniform ideal gas. Using ordinary perturbation theory, we find in first order (TcTc0)/Tc0=0.93aρ1/3(T_c-T_c^0)/T_c^0 = -0.93 a\rho^{1/3}, where T_c^0 is the transition temperature of the corresponding ideal Bose gas, a is the scattering length, and ρ\rho is the particle number density.Comment: 14 pages (RevTeX

    Event Reconstruction with MarlinReco at the ILC

    Get PDF
    After an overview of the modular analysis and reconstruction framework Marlin an introduction on the functionality of the Marlin-based reconstruction package MarlinReco is given. This package includes a full set of modules for event reconstruction based on the Particle Flow approach. The status of the software is reviewed and recent results using this software package for event reconstruction are presented.Comment: 6 pages, 2 .eps figures, to appear in Proc. LCWS06, Bangalore, March 200

    Spin Configuration in the 1/3 Magnetization Plateau of Azurite Determined by NMR

    Get PDF
    High magnetic field 63,65^{63,65}Cu NMR spectra were used to determine the local spin polarization in the 1/3 magnetization plateau of azurite, Cu3_3(CO3_3)2_2(OH)2_2, which is a model system for the distorted diamond antiferromagnetic spin-1/2 chain. The spin part of the hyperfine field of the Cu2 (dimer) sites is found to be field independent, negative and strongly anisotropic, corresponding to \approx10 % of fully polarized spin in a dd-orbital. This is close to the expected configuration of the "quantum" plateau, where a singlet state is stabilized on the dimer. However, the observed non-zero spin polarization points to some triplet admixture, induced by strong asymmetry of the diamond bonds J1J_1 and J3J_3.Comment: Phys. Rev. Lett. 102, in press (2009

    Towards helium ions for radiotherapy

    Get PDF

    Hysteresis effects in rotating Bose-Einstein condensates

    Full text link
    We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic trap. We find that the number of vortices and angular momentum attained by the condensate depends upon the rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena in this system.Comment: 16 pages, 7 figures; revised after referees' report

    Spatially Resolved Magnetization in the Bose-Einstein Condensed State of BaCuSi2O6: Evidence for Imperfect Frustration

    Full text link
    In order to understand the nature of the two-dimensional Bose-Einstein condensed (BEC) phase in BaCuSi2O6, we performed detailed 63Cu and 29Si NMR above the critical magnetic field, Hc1= 23.4 T. The two different alternating layers present in the system have very different local magnetizations close to Hc1; one is very weak, and its size and field dependence are highly sensitive to the nature of inter-layer coupling. Its precise value could only be determined by "on-site" 63Cu NMR, and the data are fully reproduced by a model of interacting hard-core bosons in which the perfect frustration associated to tetragonal symmetry is slightly lifted, leading to the conclusion that the population of the less populated layers is not fully incoherent but must be partially condensed
    corecore