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Abstract

The derivation of statistical properties for Partial Least Squares regression
can be a challenging task. The reason is that the construction of latent com-
ponents from the predictor variables also depends on the response variable.
While this typically leads to good performance and interpretable models in
practice, it makes the statistical analysis more involved. In this work, we
study the intrinsic complexity of Partial Least Squares Regression. Our con-
tribution is an unbiased estimate of its Degrees of Freedom. It is defined as
the trace of the first derivative of the fitted values, seen as a function of the
response. We establish two equivalent representations that rely on the close
connection of Partial Least Squares to matrix decompositions and Krylov
subspace techniques. We show that the Degrees of Freedom depend on the
collinearity of the predictor variables: The lower the collinearity is, the higher
the Degrees of Freedom are. In particular, they are typically higher than the
naive approach that defines the Degrees of Freedom as the number of compo-
nents. Further, we illustrate that the Degrees of Freedom are useful for model
selection. Our experiments indicate that the model complexity based on the
Degrees of Freedom estimate is lower than the model complexity of the naive
approach. In terms of prediction accuracy, both methods obtain the same
accuracy as cross-validation.

1 Introduction

Partial Least Squares regression (PLSR) (Wold, 1975) is a two-step regularized re-
gression technique. It iteratively constructs an orthogonal set of latent components
from the predictor variables which have maximal covariance with the response vari-
able. This low-dimensional representation of the data is then used for fitting a linear
regression model. PLSR is extended to nonlinear regression problems via a trans-
formation of the predictor variables (Durand and Sabatier, 1997; Rosipal and Trejo,
2001).

For model selection in PLSR, the optimal number of components has to be deter-
mined. While cross-validation is the standard approach, an alternative is the use
of information criteria, which use the complexity of the fitted model. In regres-
sion, the complexity of a fitting method is defined in terms of Degrees of Freedom.
Apart from their usefulness for model selection, Degrees of Freedom also quantify
the intrinsic complexity of a regression method (see e.g. Van der Voet (1999) for an
overview). In contrast to other standard regression techniques as Principal Compo-
nents Regression or Ridge Regression (where the Degrees of Freedom equal the trace
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of the hat-matrix), the definition of Degrees of Freedom of PLSR is not straightfor-
ward. This is due to the fact that PLSR is not linear in the sense that the fitted
response does not depend linearly on the response: As the set of latent components
is constructed in a supervised fashion, the projection of the response variable onto
these components is a highly nonlinear function of the response. Therefore, it has
been argued (e.g Martens and Naes (1989); Frank and Friedman (1993)) that the
Degrees of Freedom of PLSR exceed the number of components.

We provide an unbiased estimate of the generalized Degrees of Freedom of PLSR.
It is defined as the trace of the Jacobian matrix of the fitted values, seen as a
function of the response. We illustrate on various benchmark data that the com-
plexity of PLSR depends on the collinearity of the predictor variables: The higher
the collinearity is, the lower is the complexity. Under additional assumptions on the
collinearity structure of the data, we provide bounds for the Degrees of Freedom if
one component is used.

We present two different implementations. (i) The first one is derived via an iterative
computation of the first derivative of the PLSR fit. To do so, we use the equivalence
of Partial Least Squares Regression to the Lanczos decomposition of the matrix of
predictor variables. This implementation has the advantage that it also provides
an asymptotic distribution of the PLSR regression coefficients, which can be used
for the construction of confidence intervals (Phatak et al., 2002; Denham, 1997).
(ii) The second one computes the Degrees of Freedom directly, i.e. it avoids the
computation of the derivative itself. This leads to a more favorable runtime. For
the derivation, we use the close connection of PLS regression to Krylov subspace
techniques. Both algorithms are implemented in the R package ppls (Krämer and
Braun, 2010).

We investigate the performance of the Degrees of Freedom of PLSR with respect to
model selection by comparing the test errors based on 10fold cross-validation and
based on the Bayesian Information Criterion (Schwarz, 1978). For the latter infor-
mation criterion, we use our Degrees of Freedom estimate and the naive approach
that defines the Degrees of Freedom of PLSR via the number of components. Our
experiments show that the model complexity based on our Degrees of Freedom esti-
mate is typically lower than the model complexity of the naive approach. In terms
of prediction accuracy, the two approaches are on a par with the gold-standard of
cross-validation.

2 Methodological Background

We consider a multivariate regression problem

Y = f(x) + ε , ε ∼ N
(
0, σ2

)
, (1)

and the task is to estimate the unknown function f : Rp → R from a finite set of
n examples (x1, y1), . . . , (xn, yn) ∈ Rp ×R drawn from (1). Let us denote by x and
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s(x) the mean and the standard deviation of the predictor examples xi and by y the
mean of the response samples yi. The p×p diagonal scaling matrix D is defined via
dii = 1/s(x)i. The n× p data matrix X is the matrix whose rows are the centered
and scaled xi, and the vector y ∈ Rn consists of the centered response yi. While in
the course of this paper, we assume that the regression function f is linear,

f(x) = β(0) + β>x , β(0) ∈ R, β ∈ Rp , (2)

the definitions given in Subsection 2.1 do not require f to be a linear function.
Finally, we define the matrix and vector of empirical correlations via

S =
1

n− 1
X>X ∈ Rp×p and s =

1

n− 1
X>y ∈ Rp. (3)

2.1 Degrees of Freedom and Model Selection

Regularized regression methods typically yield a set of estimates f̂λ of the true
regression function f , and the parameter λ determines the amount of regularization.
In Partial Least Squares Regression, the parameter λ corresponds to the number of
latent components.

The task is to determine the optimal parameter value λ. Information criteria are
based on the rationale that the true error of f̂λ can be estimated in terms of its
training error and its complexity. In regression problems, the complexity is defined
via Degrees of Freedom. These are defined for the class of methods that are linear
in the sense that the fitted values are a linear a function of y, i.e. ŷλ = Hλy
with Hλ ∈ Rp×p a matrix that does not depend on y. Popular examples are Ridge
Regression and Principal Components Regression. The matrix Hλ is called the hat-
matrix. In the linear case, the Degrees of Freedom are defined as the trace of the
hat-matrix,

DoF(λ) = trace (Hλ) . (4)

As we point out below, PLS regression is not a linear method, and the above def-
inition cannot we applied. In order to extend the notion of Degrees of Freedom to
PLS regression, we propose the generalized definition proposed in Efron (2004).

Definition 1. Let f̂λ be an estimate of the true regression function f , parameterized
by λ. We define the vector of fitted values as ŷλ = (f̂λ(x1, ), . . . , f̂λ(xn))>. The
Degrees of Freedom are

DoF (λ) = E
[
trace

(
∂ŷλ

∂y

)]
.

Here, the input X is assumed to be fixed and the expectation E is taken with respect
to y1, . . . , yn.
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The Degrees of Freedom measure the sensitivity of the fitted values, seen as a func-
tion of y. Note that for the special case of linear methods, this definition coincides
with (4).

Popular examples of information criteria include the Akaike information criterion
(aic) (Akaike, 1973)

aic (λ) = ‖ŷλ − y‖2 + 2σ2 DoF(λ) ,

the Bayesian information criterion (bic) (Schwarz, 1978)

bic (λ) = ‖ŷλ − y‖2 + log(n)σ2 DoF(λ) , (5)

and the generalized minimum description length (gmdl) (Hansen and Yu, 2001)

gmdl (λ) = n log(Sλ) + DoF(λ) log(Fλ) + log(n)

with

Sλ = ‖ŷλ − y‖2/n−DoF λ , Fλ = ‖ŷλ‖2/ DoF(λ)Sλ .

For both aic and bic, we need an estimate of the noise level σ defined in (1). For
linear methods ŷλ = Hλy, this is accomplished as follows. We have

E
[
‖ŷλ − y‖2

]
= ‖E[ŷλ − y]‖2 + var (ŷλ − y)

= ‖E[ŷλ − y]‖2 + trace
(
(In −Hλ)(In −H>

λ )
)
σ2 .

By dropping the unknown bias term ‖E[ŷλ − y]‖2, we yield an estimate of σ via

σ̂2
∗ =

‖ŷλ − y‖2

trace
(
(In −Hλ)(In −H>

λ )
) . (6)

If Hλ is a projection operator (which is true for e.g. Principal Components Regres-
sion), the expression simplifies to

σ̂2 =
‖ŷλ − y‖2

n−DoF(λ)
. (7)

The latter estimate is most commonly used, even if the above assumption is not
fulfilled. Equation (7) also shows that the estimation of the noise level is implicit in
the gmdl criterion (via the quantity Sλ).

2.2 Partial Least Squares Regression

PLSR constructs m latent components T = (t1, . . . , tm) ∈ Rn×m from the predictor
variables X such that the components ti are mutually orthogonal and that they have
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maximum covariance to the response y. In the NIPALS algorithm (Wold, 1975),
the first component t1 = Xwi maximizes the squared covariance to the response y,

w1 = arg max
w

‖cov(Xw, y)‖2

w>w
= arg max

w

w>X>yy>Xw

w>w
∝ X>y . (8)

The vector wi is called a weight vector. Subsequent components t2, t3, . . . are chosen
such that they maximize the squared covariance to y and that all components are
mutually orthogonal. Orthogonality is enforced by deflating the original variables
X . That is, we only consider the part of X that is orthogonal on tj, j < i:

Xi = X − Pt1,...,ti−1
X . (9)

Here, Pt1,...,ti−1
denotes the orthogonal projection onto the space spanned by t1, . . . , ti−1.

We then replace X by Xi in (8). While the matrix T = (t1, . . . , tm) is orthogonal
by construction, it can be shown that the matrix W = (w1, . . . ,wm) ∈ Rd×m is
orthogonal as well (e.g. Hoskuldsson (1988)). The m latent components T are used
as regressors in a least squares fit in place of X, leading to fitted values

ŷm = y + T
(
T>T

)−1
T>y = y + PT y . (10)

We emphasize that PLSR is not a linear estimator as defined in Section 2.1: The
projection matrix PT depends on the response as well, as the latent components
T are defined in terms of both X and y. To determine the estimated regression
coefficients and intercept in (2), we define

L = T>XW ∈ Rm×m (11)

and obtain (Manne, 1987; Hoskuldsson, 1988)

β̂m = DWL−1T>y and β̂(0)
m = y + x>β̂m .

Here, D is the diagonal scaling matrix.

3 Unbiased Degrees of Freedom

As explained above, the latent components T of PLSR depend on the response y.
Therefore, the relationship between y and the fitted PLSR values ŷm is nonlinear,
and the compact formula (4) for the Degrees of Freedom cannot be applied. However,
we can use the more general definition 1 to obtain an unbiased plug-in estimate.

Proposition 2. An unbiased estimate of the Degrees of Freedom of PLSR with m
latent components T = (t1, . . . , tm) is given by

D̂oF(m) = 1 + trace

(
∂PT y

∂y

)
. (12)

The constant term 1 corresponds to the estimation of the intercept β(0), which
consumes one Degree of Freedom. For the derivation, we need to compute the
trace of the derivative in (12) explicitly. We propose two equivalent algorithms in
Subsections 3.2 and 3.3.
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Table 1: Properties of the six benchmark data sets.

training mean absolute
data set variables examples examples correlation
kin (fh) 32 8192 60 low (0.009)
bank (fh) 8 8192 30 low (0.009)
ozone 12 203 50 medium (0.260)
boston 13 506 50 medium (0.390)
tecator 100 215 129 high (0.986)
cookie 700 70 39 high (0.867)

3.1 Illustration and a Lower Bound

Before delving deeper into the details of the implementation, we illustrate the
properties of the Degrees of Freedom on various benchmark data. An overview
on the six data sets is given in Table 1(see the appendix for more details). We
choose the six particular data sets as they differ with respect to the collinearity
structure of the predictor variables. As an indicator for the degree of collinearity,
we compute the mean of the absolute empirical correlation coefficients defined by
s = (2/(p2 − p))

∑p
i<j |sij| . Here sij is the (i, j)-entry of the empirical correlation

matrix S of X. The values of s are displayed in the fifth column of Table 1. In
Figure 1, we plot the Degrees of Freedom for each of the six data sets. We use all
samples for the computation except for the large data sets kin (fh) and bank (fh),
where we use a subsample of size 300. In addition, we display the naive estimate
DoF(m) = m+1, i.e. the Degrees of Freedom equals the number of components plus
1. In all examples, our Degrees of Freedom estimate exceeds the naive approach.
This supports the conjecture that DoF(m) ≥ m+1, which is voiced e.g. in Martens
and Naes (1989); Frank and Friedman (1993).

Furthermore, Figure 1 shows that the correlation structure of the predictor variables
determines the shape of the DoF-curve. In our examples, the complexity is higher
for data with low correlation. We underpin this observation by a lower bound on
the Degrees of Freedom of PLSR with m = 1 components.

Theorem 3. If the largest eigenvalue λmax of the empirical correlation matrix S
defined in (3) fulfills

λmax ≤ 1

2
trace(S) , (13)

then

D̂oF(m = 1) ≥ 1 +
trace(S)

λmax

. (14)

Condition (13) controls the amount of collinearity of X: If the collinearity is low,
the decay of the eigenvalues of S is slow (and condition (13) is fulfilled). The lower
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Figure 1: Estimated Degrees of Freedom (blue stars) for the six benchmark data
sets. The solid line displays the naive estimate DoF(m) = m + 1. If the assumption
of theorem 3 is fulfilled, we also display the lower bound on the Degrees of Freedom
for 1 component (dashed horizontal line).

bound (14) is higher for data with low collinearity. In Figure 1, we add the lower
bound for the data sets which fulfill the condition. This is the case for all but the
two data sets tecator and cookie.

Proof. We express the PLS fit for one component in terms of S and s defined in
(3). Recall that the first latent component is defined as t1 = Xs, which implies

ŷ1 = y +
s>s

s>s
Xs .

After computing the derivative of this term with respect to y and computing its
trace, we obtain

D̂oF(m = 1) = 3 +
s>s

s>Ss

[
trace(S)− 2

(
s>S2s

)
s>Ss

]
.

Now, by definition of the Rayleigh coefficients, s>S2s/s>Ss ≤ λmax and s>s/s>Ss ≥
1/λmax . It follows that

trace(S)− 2

(
s>S2s

)
s>Ss

≥ trace(S)− 2λmax .
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Condition (13) ensures that the right-hand side of this inequality is ≥ 0, hence,

D̂oF(m = 1) ≥ 3 +
s>s

s>Ss
[trace(S)− 2λmax]

≥ 3 +
1

λmax

[trace(S)− 2λmax] = 1 +
trace(S)

λmax

.

3.2 First Derivative of the Lanczos Decomposition

We extend the approaches that are proposed in Denham (1997); Serneels et al.
(2004). There, the iterative formulation of the NIPALS algorithm is used to con-
struct the derivative of β̂m. Instead, our algorithm is based on the matrix decom-
position defined by (11). Note that the matrix L is upper bidiagonal, i.e. lij = 0 for
i > j or i < j − 1. The relationship (11) defines a Lanczos decomposition (Lanczos,
1950) of X, i.e. a decomposition into orthonormal matrices T and W and an upper
bidiagonal matrix L. For fixed y and m, the decomposition is unique. The Lanczos
decomposition can be interpreted as the analogue to the singular value decompo-
sition that is defined by Principal Components Analysis. For more details on the
equivalence of PLSR and Lanczos decompositions, we refer to Eldén (2004).

We propose an implementation of PLSR that iteratively constructs the derivative
of the projection operator PT based on the Lanczos decomposition. This has the
advantage that we also obtain the derivative of the regression coefficients β̂m, which
can then be used to construct approximative confidence intervals (Phatak et al.,
2002; Denham, 1997).

We proceed in three steps. First, we derive a fast recursive PLSR algorithm based
on the Lanczos decomposition. This algorithm avoids the explicit deflation of X as
in (9), and only depends on projections onto one-dimensional subspaces. Second,
we determine the first derivative of one-dimensional projection operators, which are
based on (Krämer and Braun, 2007)

∂ (v/‖v‖S)

∂y
:=

∂
(
v/
√

v>Sv
)

∂y
=

1

‖v‖S

(
In −

vv>S

v>v

)
∂v

∂y
.

and

∂
(
vv>z

)
∂y

=
(
vz> + v>zIn

) ∂v

∂y
+ vv>

∂z

∂y
.

Finally, we differentiate the recursive formulas of the Lanczos representation. Algo-
rithm 1 displays the result. Its derivation can be found in the appendix.

As we compute the derivative of the regression coefficients as well, we can estimate
the covariance of the PLSR coefficients by using a first order Taylor approximation
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Algorithm 1 Derivative of the regression coefficients and Degrees of Freedom
1: Input: centered and scaled data X, y, number m of components
2: n = number or examples
3: S =

(
X>X

)
/(n− 1), s =

(
X>y

)
/(n− 1)

4: Initialization: β̂0 = 0p, (∂β0/∂y) = 0p×n

5: for i = 1, . . . ,m do
6: wi = s− Sβ̂i−1

7: (∂wi/∂y) = X>/(n− 1)− S
(
∂βi−1/∂y

)
8: vi = wi −

∑i−1
j=1 vjv

>
j Swi

9: (∂vi/∂y) = (∂wi/∂y)−
∑i−1

j=1

(
∂vjv

>
j Swi/∂y

)
10: vi =

√
n− 1vi/‖vi‖S

11: (∂vi/∂y) =
√

n− 1∂ (vi/‖vi‖S) /∂y

12: β̂i = β̂i−1 + viv
>
i s

13: ∂βi/∂y = ∂βi−1/∂y +
(
∂viv

>
i s/∂y

)
14: end for
15: DoF(m) = 1 + trace (X∂βm/∂y).

β̂m ≈
(
∂β̂m/∂y

)
y, which leads to

ĉov
(
β̂m

)
= σ2∂β̂m

ŷ

(
∂β̂m

ŷ

)>
.

Furthermore, we can use the first order Taylor expansion to construct an approxi-
mate hat-matrix for PLSR via

Hm =
∂ym

∂y
. (15)

This matrix can be plugged into formula (6) for the estimation of the noise level.

3.3 Trace of the Krylov Representation

The computation of the derivative of ŷm in Subsection 3.2 involves repeated matrix-
matrix-multiplications. For high-dimensional data, this can become very time-
consuming. As we do not need the derivative itself for the Degrees of Freedom
but only its trace, we reduce the computational load by cleverly rearranging the
computation of the derivative.

To this end, we use a closed form expression of the fitted values ŷm that is based
on Krylov subspaces. We use the fact (Hoskuldsson, 1988) that span {t1, . . . , tm} =
span {Ky, . . . ,Kmy} =: Km, with K = XX> the n × n kernel matrix. The
space on the right-hand side is called the Krylov subspace defined by K and Ky.
We use the explicit representation ŷm = y + PKm to compute its derivative. In
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Phatak et al. (2002), a corresponding formula for β̂m is used to determine its ap-
proximate distribution. We extend this result to the derivative of the fitted val-
ues. Additionally, after computing the derivative, we apply the basis transformation
B = (〈ti, K

jy〉) ∈ Rm×m to improve numerical stability. This yields the following
result.

Proposition 4. Set

c = B−1T>y ∈ Rm and V = (v1, . . . ,vm) = TB−> ∈ Rn×m , .

We have

∂ŷm

∂y
=

1

n
In +

m∑
j=1

cj

(
In − TT>)Kj +

m∑
j=1

vj (y − ŷm)>Kj + TT> .

In contrast to the Lanczos representation (Subsection 3.2), the representation in
Proposition 4 is more convenient for the computation of the Degrees of Freedom, as
its trace can be computed directly.

Proposition 5. The unbiased estimate for the Degrees of Freedom of PLSR with m
components equals

D̂oF(m) = 1 +
m∑

j=1

cj trace
(
Kj
)
−

m∑
j,l=1

tl
>Kjtl + (y − ŷm)>

m∑
j=1

Kjvj + m .

Hence, for the computation of the Degrees of Freedom of PLSR, we need a single fit
of the PLSR algorithm that returns the matrix T of latent components. One can
either use the original formulation of the NIPALS algorithm (Subsection 2.2) or the
Lanczos decomposition (Algorithm 1) without the computation of the derivative.

4 Experiments

We evaluate the performance of the Degrees of Freedom with respect to model selec-
tion. We investigate the performance both with respect to the prediction accuracy
(Subsection 4.1) and with respect to the complexity of the selected model (Sub-
section 4.2). In Subsection 4.3, we discuss numerical issues and the computational
efficiency of our proposed algorithms.

In our experiments, we consider the Bayesian Information Criterion. We con-
ducted experiments with the Akaike Information Criterion and the generalized
Minimum Description Length as well, but we found that our main observations
on the difference between our Degrees of Freedom estimate and the naive approach
DoF(m) = m + 1 do not depend on the particular criterion. Hence, for the sake of
clarity, we only report the results for the Bayesian Information Criterion.
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We use the six benchmark data sets that are introduced in Table 1. For all data
sets, we split the data into training and test data using ntrain training examples (see
Table 1 for the respective values of ntrain). On the training data, we apply four
different model selection criteria. (a) CV: 10-fold cross-validation. (b) BIC(l):
Bayesian Information Criterion with the Degrees of Freedom computed from the
Lanczos decomposition (Algorithm 1). For the estimation of the noise level, we
use equation (6) with the approximate hat-matrix defined in (15). (c) BIC(k):
Bayesian Information Criterion with the Degrees of Freedom computed from the
Krylov representation (Proposition 5). For the estimation of the noise level, we use
equation (7). (d) BIC(n): Bayesian Information Criterion with the naive Degrees
of Freedom DoF(m) = m + 1. For the estimation of the noise level, we use equation
(7). Note that BIC(l) and BIC(k) use the same Degrees of Freedom estimate, and
only differ in the estimation of the noise level σ . As the computation of the Degrees
of Freedom depends on two different implementations, their runtime differs. For
each of the four criteria, we measure the performance on a separate hold-out set.
The procedure is repeated 50 times.

4.1 Prediction Accuracy

We display the boxplot of the test errors in Figure 2. If the notches of two boxes
do not overlap this is evidence that the two medians differ. The four criteria do
not show any strong difference in performance over the six data sets. A remarkable
point is that on average, the naive approach BIC(n) does not lead to a higher test
error than the criteria that use our estimates of the Degrees of Freedom of PLSR.
The experiments indicate that in terms of prediction accuracy, the naive approach
yields competitive results. This observation is important in scenarios with time
constraints. If computationally intensive model selection is not feasible due to lack
of time, the naive approach is a fast alternative. We refer to Subsection 4.3 for more
details on computation time.

4.2 Model Complexity

Figure 3 displays the number of selected components for the four different criteria.
In addition, we show the Degrees of Freedom for the selected number of components
in Table 4. While their prediction accuracy is very similar, the model complexity of
our Degrees of Freedom estimate and the naive approach differ significantly. Except
for the bank (fh) data, the number of selected components is always higher for
the naive approach. This underpins the fact that it underestimates the intrinsic
complexity of PLSR. If the main goal of the data analysis is the construction of a
predictive model with low dimensionality, the criteria based on cross-validation or
our Degrees of Freedom estimates are therefore preferable.
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Figure 2: Test error for the model selection criteria. To improve the readability, we
multiply the results for kin (fh) and cookie with 100, and the results for bank
(fh) with 1 000.

4.3 Numerical Stability and Run-Time

As explained in Subsection 3.2, the sparse structure of L allows us to derive a
fast iterative algorithm for PLSR and its derivative (Algorithm 1). In practice,
we observe that the sparsity leads to numerical problems: After a certain number
of components, the latent components ti are not mutually orthogonal anymore.
This typically affects the computation of the Degrees of Freedom as well and leads
to implausible results (e.g. negative Degrees of Freedom). In Krämer and Braun
(2007) we use the sparse structure of L and impose an additional stopping criterion
to ensure that the latent components are orthogonal. However, this algorithm can
stop very early (sometimes after 5 iterations on the tecator data set). Therefore,
we use formulation (16) that requires little additional computation time but ensures
stability.

In some of the data, we observe that for a rather large amount of components, both
implementations for the Degrees of Freedom return negative Degrees of Freedom.
E.g. on the tecator data set, this occurs for the Lanczos representation on average
if we compute more than 26 components. This indicates a numerical problem.
Therefore, in our experiments, we set the maximum number of components to m∗
if we observe negative Degrees of Freedom for m∗ + 1 components.

Table 4.3 shows the runtime of the four model selection criteria on the six different
data sets. For cookie, we use an implementation that relies on the kernel matrix
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Figure 3: Number of selected components for the model selection criteria.

K and y (Krämer and Braun, 2007). While the absolute values are low, the four
criteria shows clear differences. The Lanczos decomposition is by far the slowest
approach, as it first computes the derivative of the PLSR fit before computing the
Degrees of Freedom. With respect to runtime, the algorithm based on the Krylov
representation is therefore preferable, if the explicit derivative is not needed. The
naive approach is always the fastest method, as it only requires a single run of the
PLSR algorithm and no additional computation of the Degrees of Freedom.

Table 2: Average runtime (in seconds) of the four criteria.
data CV BIC(l) BIC(k) BIC(n)
kin (fh) 0.236 0.549 0.238 0.024
bank (fh) 0.048 0.022 0.014 0.005
ozone 0.111 0.091 0.031 0.006
boston 0.079 0.062 0.032 0.008
tecator 0.945 6.259 0.688 0.093
cookie 1.325 0.672 0.435 0.132
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Figure 4: Degrees of Freedom for the mumber of selected components for the model
selection criteria.

5 Discussion and Conclusion

Our findings show that typically, the Degrees of Freedom are higher for data sets
with predictor variables that have low correlation and that each PLSR component
consumes more than one Degree of Freedom. This confirms the longstanding conjec-
ture that DoF(m) ≥ m + 1. This result may not come as a big surprise: For a fixed
number of components, PLSR is less biased than Principal Components Regression
(De Jong, 1993). This decrease in bias is balanced by an increased complexity in
terms of Degrees of Freedom.

On average, the Degrees of Freedom of PLSR in combination with information
criteria yield the same prediction accuracy as cross-validation. We find it remarkable
that the accuracy of the naive Degrees of Freedom is on a par with both cross-
validation and our Degrees of Freedom estimate. However, in terms of the number
of PLSR components, the naive approach typically selects more complex models,
confirming again that the naive Degrees of Freedom underestimate the intrinsic
complexity of PLSR. For many moderate sized data sets, the prediction accuracy
first decreases sharply with the number of components, and then reaches a flat
plateau for higher number of components. In this case, a more complex model can
lead to a comparable prediction accuracy, and this is a possible explanation for the
good performance of the naive approach.

In this paper, we applied the Degrees of Freedom estimate to the selection of the
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optimal number of PLSR components. It is possible to extend our framework to
penalized PLSR (Goutis and Fearn, 1996; Reiss and Ogden, 2007; Krämer et al.,
2008), where an additional smoothing parameter has to be selected. The derivation
of the Degrees of Freedom can be adapted accordingly.

The two implementations for the Degrees of Freedom capitalize on the close connec-
tion between PLSR and methods from numerical linear algebra, namely the Lanczos
decompositions and Krylov subspace approximations. Apart from the computa-
tional advances that are pointed out in this paper, this connection is very fruitful
to analyze statistical properties of PLSR in a concise way. Recent results on the
correspondence of penalized PLSR to preconditioning (Krämer et al., 2008) and on
the prediction consistency of PLSR (Blanchard and Krämer, 2010) underpin the po-
tential of this connection. We strongly believe that the interplay between numerical
linear algebra and PLSR will further stimulate the field of statistics.
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A Derivation of Algorithm 1

The weight vector wi can be rewritten as wi = X> (y − ŷi−1) ∝ s − Sβ̂i−1 . We
define the ”pseudo”-weight vector vi via ti = Xiwi =: Xvi . Using the sparsity of
the matrix L, we obtain

vi = wi − vi−1v
>
i−1Swi

[
−

i−2∑
j=1

vjv
>
j Swi

]
. (16)

Due to the upper-bidiagonal structure of L, the term in the square brackets is 0 and
hence superfluous. However, to ensure numerical stability, we include the term in
our computation. The normalization of ti to unit length corresponds to

vi =

√
n− 1

‖vi‖S

vi =

√
n− 1√
v>i Svi

vi .

It follows that β̂i = β̂i−1 + viv
>
i s .
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B Description of the Data Sets

kin (fh) Simulation of the forward dynamics of an eight link all-revolute robot
arm. The 32 predictor variables correspond to positions of joints and to twist angles,
length and offset distance for links. The task is to predict the distance of the end-
effector from a target. The problem is fairly linear (f) and contains a hight amount
of noise (h). The data is available at the delve-repository http://www.cs.toronto.
edu/~delve/.

bank (fh) Simulation of how bank-customers choose their banks. The eight vari-
ables are the coordinates of the residual area of the costumer and of the banks,
the population sizes of the areas of interest, a temperature controlling bank choice
and the maximum possible length of queues. The task is to predict the fraction of
bank customers who leave the bank because of full queues. The problem is fairly
linear (f) and contains a hight amount of noise (h). The data is available at the
delve-repository http://www.cs.toronto.edu/~delve/.

boston Census data. This data set contains information collected by the U.S
Census Service concerning housing in the area of Boston. The 13 predictor variables
(per capita crime rate by town, average number of rooms per dwelling, etc.) describe
different aspects of the neighborhood. The task is to predict the medium value of a
home. The data is first analyzed in Harrison and Rubinfeld (1978) and is provided
by the R-package ’MASS’ (Venables and Ripley, 2002).

ozone Los Angeles ozone pollution data 1976. The 12 predictor variables contain
the date of the measurement and information on wind speed, humidity, temperature
etc.. The task is to predict the daily maximum one-hour-average ozone reading.
The original data contains missing values. From the 366 examples, we use the 203
examples with no missing values. The data is provided by the R-package ’mlbench’
(Leisch and Dimitriadou, 2010).

tecator Near Infrared Transmission for samples of meat. For each meat sample
the predictor variables are a 100 channel spectrum of absorbances. The task is to
predict the amount of water in the meat. The data set provided by the R-package
’caret’ (Kuhn et al., 2009) also contains the amount of fat and protein.

cookie Quantitative NIR spectroscopy for dough piece. A Near Infrared reflectance
spectrum is available for each dough piece. The spectral data consist of 700 points
measured from 1100 to 2498 nanometers (nm) in steps of 2 nm. The task is to
predict the percentage of fat. The data is first analyzed in Brown et al. (2001);
Osborne et al. (1984). The data set provided by the R-package ’ppls’ (Krämer and
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Boulesteix, 2009) also contains the percentage of sucrose, dry flour, and water.

For tecator and cookie, the number of training samples matches the number of
training samples in the original experiments on the data. For the other data sets,
we choose the number of training samples such that the regression problem is fairly
high-dimensional.
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