793 research outputs found

    Radar observations in the vicinity of pre-noon auroral arcs

    Get PDF
    International audienceA combination of EISCAT incoherent scatter radar measurements, optical and magnetometer data is used to study the plasma in and around pre-noon structured precipitation and auroral arcs. Particular attention is paid to regions of comparatively low E-region density observed adjacent to arcs or structured precipitation in the EISCAT Svalbard radar field-aligned measurements. Comparison between luminosity and incoherent scatter electron density measurements shows that the low-density regions occur primarily due to the absence of diffuse precipitation rather than to a cavity formation process. Two cases of arcs and low density/luminosity regions are identified. The first is related to a strong Pc5 pulsation event, and the absence of diffuse precipitation is due to a large-scale modulation of the diffuse precipitation. In the second case the equatormost arc is on a shielding boundary and the low-density region coincides with a strong flow region just poleward of this arc. Regions of high electric field and low luminosity and conductance are observed prior to intensification of the structured precipitation in both cases. The ionospheric current is enhanced in the low conductance region, indicating that the strong electric fields do not result solely from ionospheric polarization electric fields, and thus are mainly driven by magnetospheric processes. The average energy of the precipitating electrons in the arcs and structured precipitation is, according to EISCAT measurements, 500eV and the energy spectra are similar for the pulsation and shielding cases. The average energy is thus significantly less than in the diffuse precipitation region which shows central CPS-like energy spectra. We suggest that the low ionospheric conductance of 0.7S in the low density regions is favorable for the arc formation process. This is in quantitative agreement with recent simulations of the ionospheric feedback instability. Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions) ? Ionosphere (Plasma convection

    An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays

    Get PDF
    It is proposed that the enhancements of cosmic ray oxygen and nitrogen observed at approximately 10 MeV/nucleon could result from neutral interstellar particles which are swept into the solar cavity. This is caused by motion of the sun through the interstellar medium, and the particles are subsequently ionized and accelerated

    Geomagnetic disturbances on ground associated with particle precipitation during SC

    Get PDF
    We have examined several cases of magnetosphere compression by solar wind pressure pulses using a set of instruments located in the noon sector of auroral zone. We have found that the increase in riometric absorption (sudden commencement absorption, SCA) occurred simultaneously with the beginning of negative or positive magnetic variations and broadband enhancement of magnetic activity in the frequency range above 0.1 Hz. Since magnetic variations were observed before the step-like increase of magnetic field at equatorial station (main impulse, MI), the negative declinations resembled the so-called preliminary impulse, PI. In this paper a mechanism for the generation of PI is introduced whereby PI's generation is linked to SCA ā€“ associated precipitation and the local enhancement of ionospheric conductivity leading to the reconstruction of the ionospheric current system prior to MI. Calculation showed that PI polarity depends on orientation of the background electric field and location of the observation point relative to ionospheric irregularity. For one case of direct measurements of electric field in the place where the ionospheric irregularity was present, the sign of calculated disturbance corresponded to the observed one. High-resolution measurements on IRIS facility and meridional chain of the induction magnetometers are utilized for the accurate timing of the impact of solar wind irregularity on the magnetopause

    Rocket-borne investigation of auroral patches in the evening sector during substorm recovery

    Get PDF
    International audienceOn 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT) auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches

    Influence of high-latitude geomagnetic pulsations on recordings of broadband force-balanced seismic sensors

    Get PDF
    Seismic broadband sensors with electromagnetic feedback are sensitive to variations of surrounding magnetic field, including variations of geomagnetic field. Usually, the influence of the geomagnetic field on recordings of such seismometers is ignored. It might be justified for seismic observations at middle and low latitudes. The problem is of high importance, however, for observations in Polar Regions (above 60Ā° geomagnetic latitude), where magnitudes of natural magnetic disturbances may be two or even three orders larger. In our study we investigate the effect of ultra-low frequency (ULF) magnetic disturbances, known as geomagnetic pulsations, on the STS-2 seismic broadband sensors. The pulsations have their sources and, respectively, maximal amplitudes in the region of the auroral ovals, which surround the magnetic poles in both hemispheres at geomagnetic latitude (GMLAT) between 60Ā° and 80Ā°. To investigate sensitivity of the STS-2 seismometer to geomagnetic pulsations, we compared the recordings of permanent seismic stations in northern Finland to the data of the magnetometers of the IMAGE network located in the same area. Our results show that temporary variations of magnetic field with periods of 40ā€“150 s corresponding to regular Pc4 and irregular Pi2 pulsations are seen very well in recordings of the STS-2 seismometers. Therefore, these pulsations may create a serious problem for interpretation of seismic observations in the vicinity of the auroral oval. Moreover, the shape of Pi2 magnetic disturbances and their periods resemble the waveforms of glacial seismic events reported originally by Ekstrƶm (2003). The problem may be treated, however, if combined analysis of recordings of co-located seismic and magnetic instruments is used

    Azimuthal expansion of high-latitude auroral arcs

    No full text
    International audienceWe used the TV auroral observations in Barentsburg (78.05Ā° N 14.12Ā° E) in Spitsbergen archipelago, together with the data of the CUTLASS HF radars and the POLAR satellite images to study azimuthal (in the east-west direction) expansion of the high-latitude auroral arcs. It is shown that the east or west edge of the arc moved in the same direction as the convection flow, westward in the pre-midnight sector and eastward in the post-midnight sector. The velocity of arc expansion was of the order of 2.5 km/s, which is 2?3 times larger than the convection velocity measured in the arc vicinity and 2?3 times smaller than the velocity of the bright patches propagating along the arc. The arc expanded from the active auroras seen from the POLAR satellite around midnight as a region of enhanced luminosity, which might be the auroral bulge or WTS. The pole- or equatorward drift of the arcs occurred at the velocity of the order of 100 m/s that was close to the convection velocity in the same direction. These experimental results can be well explained in terms of the interchange (or flute) instability

    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    Get PDF
    The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between TromsĆø (66.6° cgmLat) and Longyearbyen (75.2° cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm. <br><br> During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 <I>R<sub>E</sub></I> mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H<sup>+</sup> and O<sup>+</sup> ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations. <br><br> The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during ~5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse

    Bursts of ULF noise excited by sudden changes of solar wind dynamic pressure

    No full text
    International audienceWe present the results of analysis of the dayside magnetic pulsation response to a sudden change in solar wind dynamic pressure. We concentrate on the events when a burst or a series of short-lived bursts in the Pc1 frequency range with the repetition period of 7?15 min were observed on the ground around the local noon. Not every impulse of large amplitude caused this phenomenon. We have found that the ULF bursts were excited when the spectrograms of the DMSP satellites showed a signature of 10?30 keV ions in the vicinity of the magnetic flux tube of the ground observatory, that may be related to a geomagnetic storm preceding the event. In light of this finding a possible model of the phenomenon is suggested in which the hot protons influence significantly both the generation and modulation of Pc1 activity

    Attractive instability of oppositely charged membranes induced by charge density fluctuations

    Full text link
    We predict the conditions under which two oppositely charged membranes show a dynamic, attractive instability. Two layers with unequal charges of opposite sign can repel or be stable when in close proximity. However, dynamic charge density fluctuations can induce an attractive instability and thus facilitate fusion. We predict the dominant instability modes and timescales and show how these are controlled by the relative charge and membrane viscosities. These dynamic instabilities may be the precursors of membrane fusion in systems where artificial vesicles are engulfed by biological cells of opposite charge
    • ā€¦
    corecore