19 research outputs found
Sensitivity of human lymphocytes to genotoxic effect of N-methyl-N-nitrosourea: possible relation to gynecological cancers
The aim of this work is to study responses of PHA-stimulated and resting lymphocytes to methylating agent N-methyl-N-nitrosourea (MNU) and to compare sensitivity to this agent of healthy donor lymphocytes and lymphocytes from patients with gynecological cancers. Methods: Cytotoxicity of MNU, apoptotic death of lymphocytes, was evaluated using two common tests β annexin V-FITC detection assay and live/dead double staining assay (nuclear morphological changes). Genotoxic effect of the agent was determined as delayed (secondary) DNA double strand breaks (DSBs) using neutral comet assay both conventional variant and modified for detection of bromodeoxyuridine-labelled comets, produced by proliferating lymphocytes only. Results: Unstimulated lymphocytes were tolerant to geno- and cytotoxic effects of MNU. In contrast to resting cells, proliferating lymphocytes showed significant genotoxicity (p = 0.0054) of MNU followed by increased apoptotic death of cells (p < 0.05). Average number of secondary DSBs induced by MNU in lymphocytes from patients with gynecological cancers was about 4-fold less than that of lymphocytes of healthy donors. While lymphocytes from cancer patients did not change proliferative index in response to MNU, the agent decreased 2-fold proliferative indices of stimulated lymphocytes from healthy donors. Conclusion: There is a reverse association between geno- and cytotoxicity of MNU in stimulated lymphocytes and the presence of tumor. The relationship appears to be based on MMR-insufficiency in lymphocytes of the cancer patients.Π¦Π΅Π»Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠ° ΠΌΠ΅ΡΠΈΠ»Π½ΠΈΡΡΠΎΠ·ΠΎΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ (ΠΠΠ) Π½Π° Π€ΠΠ-ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π»ΠΈΠΌΡΠΎΡΠΈΡΡ ΠΈ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ
ΠΏΠΎΠΊΠΎΡ Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π΄ΠΎΠ½ΠΎΡΠΎΠ² ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠΊ Ρ ΠΎΠΏΡΡ
ΠΎΠ»ΡΠΌΠΈ ΠΆΠ΅Π½ΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΎΠΉ ΡΡΠ΅ΡΡ. ΠΠ΅ΡΠΎΠ΄Ρ: ΡΠΈΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠΠ
(Π°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π³ΠΈΠ±Π΅Π»Ρ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ²) ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ Π΄Π²ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ β Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ annexin
V-FITC ΠΈ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ ΡΠ΄ΡΠ° ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΠΎΡΠ»Π΅ ΠΈΡ
ΠΎΠΊΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠΌΠ΅ΡΡΡ 2 ΠΠΠ-ΡΡΠΎΠΏΠ½ΡΡ
ΠΊΡΠ°ΡΠΈΡΠ΅Π»Π΅ΠΉ.
ΠΠ΅Π½ΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠΠ, Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅ Π΄Π²ΡΠ½ΠΈΡΠ΅Π²ΡΠ΅ ΡΠ°Π·ΡΡΠ²Ρ ΠΠΠ (ΠΠ ) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΡ
ΠΠΠ-ΠΊΠΎΠΌΠ΅Ρ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π΄Π»Ρ ΠΏΠΎΠ΄ΡΡΠ΅ΡΠ° ΠΊΠΎΠΌΠ΅Ρ, ΡΠΎΡΠΌΠΈΡΡΠ΅ΠΌΡΡ
ΡΠΎΠ»ΡΠΊΠΎ
Π΄Π΅Π»ΡΡΠΈΠΌΠΈΡΡ Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°ΠΌΠΈ, ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌΠΈ BrUdr. ΠΠΎΠ»Ρ ΡΠ°ΠΊΠΈΡ
ΠΊΠΎΠΌΠ΅Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ»ΠΈ ΠΊΠ°ΠΊ ΠΈΠ½Π΄Π΅ΠΊΡ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ:
Π»ΠΈΠΌΡΠΎΡΠΈΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΏΠΎΠΊΠΎΡ ΡΡΡΠΎΠΉΡΠΈΠ²Ρ ΠΊ Π³Π΅Π½ΠΎ- ΠΈ ΡΠΈΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΡΠ΅ΠΊΡΠ°ΠΌ ΠΠΠ. Π ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠΈΡΡΡΡΠΈΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π² ΠΎΡΠ²Π΅Ρ
Π½Π° Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΠΠ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Π²ΡΠΎΡΠΈΡΠ½ΡΠ΅ ΡΠ°Π·ΡΡΠ²Ρ ΠΠΠ (Ρ < 0,01) ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»Π° ΡΠ°ΡΡΠΎΡΠ° ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π΅ΡΠΎΠΊ (Ρ < 0,05). ΠΠ΅Π½ΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠΠ Π½Π° ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π»ΠΈΠΌΡΠΎΡΠΈΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ Π²
4 ΡΠ°Π·Π° Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ Π½Π° Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π΄ΠΎΠ½ΠΎΡΠΎΠ². ΠΠΈΠΌΡΠΎΡΠΈΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠΊ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΠΈ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΡΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ Π² ΠΎΡΠ²Π΅Ρ Π½Π°
Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΠΠ; Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π΄ΠΎΠ½ΠΎΡΠΎΠ² Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΠΠ Π²ΡΠ·ΡΠ²Π°Π»ΠΎ 2-ΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ°.
ΠΡΠ²ΠΎΠ΄Ρ: ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π΅Π½ΠΎ- ΠΈ ΡΠΈΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΡΠ²Π΅ΡΠΎΠΌ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² Π½Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΠΠ ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ Π³Π΅Π½ΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ ΠΠΠ ΡΠ²ΡΠ·Π°Π½ Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠΌ ΠΏΠΎΡΡΡΠ΅ΠΏΠ»ΠΈΠΊΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠΈ
Recommended from our members
Magnetic-field- and temperature-dependent fermi surface of CeBiPt
The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikovβde Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15βK. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25βT), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification
Recommended from our members
Magnetic-field- and temperature-dependent fermi surface of CeBiPt
The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikovβde Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15βK. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25βT), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification
FeCl3, CuSO4, CoCl2, ZnSO4 and NiSO4 effect on a gelatinolytic activity of proteinases of Pleurotus ostreatus mycelial culture
The effect of FeCl3, CuSO4, CoCl2, ZnSO4 and NiSO4 at a concentration of 10β8β10β2 M on the gelatinolytic activity of intracellular proteinases from in 14 days mycelial culture of Pleurotus ostreatus was studied. At pH 5.8, all salts inhibited activity within 30%. Only zinc sulfate in several concentrations contributed to a weak increase in proteinase activity: up to 16%. The gelatinolytic activity at pH 7.6 is characterized by the activating effect of copper sulfate in the entire range of concentrations, reaching 25β67%. The gelatinolytic activity upon the addition of cobalt chloride was suppressed more strongly than in an acidic medium at a CoCl2 concentration of 10β6 M, by 53%. At the same time, at two maximum concentrations of this effector, gelatinolysis increased by 25 and 31%. The maximum activator effect of nickel sulfate manifested itself at a concentration of 10β2 M and reached 137%, while at concentrations of 10β4 and 10β5 M, proteolysis was suppressed by 26 and 22%. At pH 9.2, CuSO4 had a clear activating effect (up to 157% relative to control) in almost the entire concentration range. The effect of other salts did not exceed 24%.ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ FeCl3, CuSO4, CoCl2, ZnSO4 ΠΈ NiSO4 Π² ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 10β8β10β2 Π Π½Π° ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π· 14-ΡΠΈ ΡΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ Pleurotus ostreatus. ΠΡΠΈ ΡΠ 5,8 Π²ΡΠ΅ ΡΠΎΠ»ΠΈ ΡΠ³Π½Π΅ΡΠ°Π»ΠΈ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
30%. ΠΠΈΡΡ ΡΡΠ»ΡΡΠ°Ρ ΡΠΈΠ½ΠΊΠ° Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°Π» ΡΠ»Π°Π±ΠΎΠΌΡ ΡΠΎΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°Π·: Π΄ΠΎ 16%. ΠΠ»Ρ ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠ 7,6 Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ΅Π½ Π°ΠΊΡΠΈΠ²Π°ΡΠΎΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ΅Π΄ΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π²ΡΠΈΠΉ 25β67%. ΠΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ Ρ
Π»ΠΎΡΠΈΠ΄Π° ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΡΠ³Π½Π΅ΡΠ°Π»Π°ΡΡ ΡΠΈΠ»ΡΠ½Π΅Π΅, ΡΠ΅ΠΌ Π² ΠΊΠΈΡΠ»ΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ CoCl2 10β6 Π β Π½Π° 53%. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΈ Π΄Π²ΡΡ
ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΡΡΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠΎΡΠ° ΠΆΠ΅Π»Π°ΡΠΈΠ½ΠΎΠ»ΠΈΠ· Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π» Π½Π° 25 ΠΈ 31%. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΎΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΡΠ»ΡΡΠ°ΡΠ° Π½ΠΈΠΊΠ΅Π»Ρ ΠΏΡΠΎΡΠ²ΠΈΠ»ΡΡ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 10β2 Π ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π» 137%, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
10β4 ΠΈ 10β5 Π ΠΏΡΠΎΡΠ΅ΠΎΠ»ΠΈΠ· ΠΏΠΎΠ΄Π°Π²Π»ΡΠ»ΡΡ Π½Π° 26 ΠΈ 22%. ΠΡΠΈ ΡΠ 9,2 ΡΠ΅ΡΠΊΠΎΠ΅ Π°ΠΊΡΠΈΠ²Π°ΡΠΎΡΠ½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ (Π΄ΠΎ 157% ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ) ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΠΊΠ°Π·Π°Π» CuSO4. ΠΡΡΠ΅ΠΊΡ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠΎΠ»Π΅ΠΉ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π» 24%
Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii
Β© 2020, Pleiades Publishing, Inc. Abstract: The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii
Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii
The iron-containing protein neuroglobin (Ngb) involved in the transport of oxygen is generally considered the precursor of all animal globins. In this report, we studied the structure of Ngb of the cold-water sponge Halisarca dujardinii. In sponges, the oldest multicellular organisms, the Ngb gene contains three introns. In contrast to human Ngb, its promoter contains a TATA-box, rather than CG-rich motifs. In sponges, Ngb consists of 169 amino acids showing rather low similarity with its mammalian orthologues. It lacks Glu and Arg residues in positions required for prevention of hypoxia-related apoptosis. Nevertheless, Ngb contains both proximal and distal conserved heme-biding histidines. The primary structure of H. dujardinii neuroglobin predicted by sequencing was confirmed by mass-spectrometry analysis of recombinant Ngb expressed in E. coli. The high level of Ngb expression in sponge tissues suggests its possible involvement in the gas metabolism and presumably in other key metabolic processes in H. dujardinii