21 research outputs found

    ВлияниС Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½Π° ΠΈ этанола Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΊΠΎΡ€Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° крыс Wistar

    Get PDF
    Resume. Background. Today the search for drugs for alcoholism treatment is concentrated around substances with anticonvulsant action, which not only stop convulsive syndrome, but also contribute to the extension of the remission period during alcohol withdrawal. Despite the successful experience in the alcoholism treatment with structural analog GABA gabapentin, there is no convincing evidence of gabapentin interaction with GABA-ergic system in the brain, moreover, most results were obtained in vitro. The aim of the present work was to study mechanism of gabapentin action on CNS and its interaction with ethanol using electrophysiological methods in vivo. Methods. The effect of gabapentin on electrical activity of neurons in the frontal cortex of rats was studied with the microelectrode technique in adult male Wistar rats. Results. Gabapentin after systemic administration, 25-100 mg/kg, i.p., dose-dependent reduced the frequency of action potentials (AP) of neurons, without changing amplitude and shape of AP of neurons. When assessing changes in the frequency of extracellular exhaust AP at microiontophoretically summing gabapentin it is established that the drug reduced the frequency of АP in 15 of 23 neurons (p < 0.05), and increased GABA-induced inhibition of pulsed electrical activity of neurons in the frontal cortex. Gabapentin didn’t affect the magnitude of exiting responses on ethanol supplied to neurons, however, increased (p < 0.05) inhibitory responses caused by ethanol in all 45 of the cells studied. Conclusion. The obtained data suggest that gabapentin has an allosteric effect on postsynaptic GABA receptors and increases ethanol-induced inhibition of neurons of the frontal cortex.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Поиск срСдств для лСчСния Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠ° сСгодня сосрСдоточСн Π²ΠΎΠΊΡ€ΡƒΠ³ вСщСств с противосудороТным дСйствиСм, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΡƒΠΏΠΈΡ€ΡƒΡŽΡ‚ судороТный синдром, Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΠ΄Π»Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° рСмиссии ΠΏΡ€ΠΈ ΠΎΡ‚ΠΌΠ΅Π½Π΅ алкоголя. НСсмотря Π½Π° ΡƒΡΠΏΠ΅ΡˆΠ½Ρ‹ΠΉ ΠΎΠΏΡ‹Ρ‚ примСнСния ΠΏΡ€ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠ° структурного Π°Π½Π°Π»ΠΎΠ³Π° Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° Π“ΠΠœΠš Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½Π°, ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° взаимодСйствия ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° с Π“ΠΠœΠš-СргичСской систСмой ΠΌΠΎΠ·Π³Π°, ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π² ΠΎΠΏΡ‹Ρ‚Π°Ρ… in vitro. ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½Π° ΠΈ Π΅Π³ΠΎ взаимодСйствия с этанолом с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктрофизиологичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π² ΠΎΠΏΡ‹Ρ‚Π°Ρ… in vivo. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ микроэлСктродной Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ исслСдовано влияниС Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½Π° Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹ ΠΌΠΎΠ·Π³Π° крыс-самцов Π»ΠΈΠ½ΠΈΠΈ Wistar. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π“Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½ ΠΏΡ€ΠΈ систСмном Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π² Π΄ΠΎΠ·Π°Ρ… 25-100 ΠΌΠ³/ΠΊΠ³, Π²/Π±, дозозависимо ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π» частоту ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² дСйствия (ΠŸΠ”) Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ², Π½Π΅ измСняя Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈ Ρ„ΠΎΡ€ΠΌΡ‹ ΠŸΠ” Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ². ΠŸΡ€ΠΈ микроионофорСтичСском ΠΏΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π» частоту ΠŸΠ” Ρƒ 15 ΠΈΠ· 23 Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² (Ρ€ &lt; 0,05), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π» Π“ΠΠœΠš-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ элСктричСской активности Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹. ΠŸΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ элСктрофорСтичСском ΠΏΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΊ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½Π° ΠΈ этанола ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ отсутствиС влияния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠ² Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ‚ΠΈΠΏΠ° Π½Π° этанол, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ тормозящСго Ρ‚ΠΈΠΏΠ°, Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ этанолом, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»ΠΈΡΡŒ (Ρ€ &lt; 0,05) Ρƒ всСх 45 исслСдованных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π³Π°Π±Π°ΠΏΠ΅Π½Ρ‚ΠΈΠ½ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ аллостСричСскоС влияниС Π½Π° постсинаптичСскиС Π“ΠΠœΠš-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ этанолом Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°

    Translated from Zhurnal Vysshei Nervnoi Deyatel&apos;nosti imeni I

    No full text
    There is a strongly held opinion that one of the most important functions of sleep is its involvement in the formation of memories The standard test for studies of learning and memory processes in animals is the Morris water test Effects of Sleep Deprivation on Consolidation of Spatial Memory in Rats after 1032 Translated from Zhurnal Vysshei Nervnoi Deyatel&apos;nosti imeni I. P. Pavlova, Vol. 61, No. 3, pp. 322-331, May-June, 2011. Original article submitted December 24, 2009. Accepted October 18, 2010. The effects of sleep deprivation produced using a carousel method on the consolidation of spatial memory were studied in rats (male Wistar rats) after one-day training using the Frick et al. protocol (2000) in a Morris water maze. Data were obtained providing evidence that the memory trace after rapid 3-h training was retained for one day. Sleep deprivation for 24 h after training prevented reinforcement (consolidation) of spatial memory. The results led to the conclusion that a model based on one-day training can be used to study the neurophysiological and neurochemical mechanisms of the effects of sleep deprivation on consolidation of spatial memory

    Integration of species and ecosystem monitoring for selecting priority areas for biodiversity conservation: Case studies from the Palearctic of Russia

    No full text
    At the start of the third millennium, new opportunities have arisen in biogeographical research, namely in the generalisation, visualisation and cross-spectrum analysis of biological and geographical information and in the compilation of biogeographical maps and innovative models for regions that differ in the availability of distribution data. These tasks include long-term monitoring of plants and animals which are in danger of extinction, geographical analysis of biodiversity distribution and development of effective wildlife conservation strategies for specific regions. The studies of the Department of Biogeography of Moscow University on geography and biodiversity conservation are based on long-term field expeditions. The examples of the Asian Subarctic Mountains, the steppes of Central Kazakhstan and the urbanised north-west of Russia are used to illustrate Russian approaches to the use of biogeographical monitoring for the identification of priority areas for biodiversity conservation. The species populations of the higher plants and vertebrates listed in the Red Books have been considered as the basic units of biodiversity
    corecore