111 research outputs found
Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation
Sensor networks potentially feature large numbers of nodes that can sense
their environment over time, communicate with each other over a wireless
network, and process information. They differ from data networks in that the
network as a whole may be designed for a specific application. We study the
theoretical foundations of such large scale sensor networks, addressing four
fundamental issues- connectivity, capacity, clocks and function computation.
To begin with, a sensor network must be connected so that information can
indeed be exchanged between nodes. The connectivity graph of an ad-hoc network
is modeled as a random graph and the critical range for asymptotic connectivity
is determined, as well as the critical number of neighbors that a node needs to
connect to. Next, given connectivity, we address the issue of how much data can
be transported over the sensor network. We present fundamental bounds on
capacity under several models, as well as architectural implications for how
wireless communication should be organized.
Temporal information is important both for the applications of sensor
networks as well as their operation.We present fundamental bounds on the
synchronizability of clocks in networks, and also present and analyze
algorithms for clock synchronization. Finally we turn to the issue of gathering
relevant information, that sensor networks are designed to do. One needs to
study optimal strategies for in-network aggregation of data, in order to
reliably compute a composite function of sensor measurements, as well as the
complexity of doing so. We address the issue of how such computation can be
performed efficiently in a sensor network and the algorithms for doing so, for
some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE
Complaints in the foot and ankle unit
Complaints in the NHS have significant legal and financial implications. We performed an investigation to identify the causes, incidence and outcome of complaints in the Foot and Ankle unit of a tertiary referral centre. We found the complaint rate in the foot and ankle unit is low. Good communication and a professional attitude will significantly reduce complaints. The majority of complaints have local resolution, but there is potential for significant cost with every complaint. </jats:p
The Range of Topological Effects on Communication
We continue the study of communication cost of computing functions when
inputs are distributed among processors, each of which is located at one
vertex of a network/graph called a terminal. Every other node of the network
also has a processor, with no input. The communication is point-to-point and
the cost is the total number of bits exchanged by the protocol, in the worst
case, on all edges.
Chattopadhyay, Radhakrishnan and Rudra (FOCS'14) recently initiated a study
of the effect of topology of the network on the total communication cost using
tools from embeddings. Their techniques provided tight bounds for simple
functions like Element-Distinctness (ED), which depend on the 1-median of the
graph. This work addresses two other kinds of natural functions. We show that
for a large class of natural functions like Set-Disjointness the communication
cost is essentially times the cost of the optimal Steiner tree connecting
the terminals. Further, we show for natural composed functions like and , the naive protocols
suggested by their definition is optimal for general networks. Interestingly,
the bounds for these functions depend on more involved topological parameters
that are a combination of Steiner tree and 1-median costs.
To obtain our results, we use some new tools in addition to ones used in
Chattopadhyay et. al. These include (i) viewing the communication constraints
via a linear program; (ii) using tools from the theory of tree embeddings to
prove topology sensitive direct sum results that handle the case of composed
functions and (iii) representing the communication constraints of certain
problems as a family of collection of multiway cuts, where each multiway cut
simulates the hardness of computing the function on the star topology
Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using ImmobilizedRhodobacter sphaeroides
Size-controlled cadmium sulfide nanoparticles were successfully synthesized by immobilizedRhodobacter sphaeroidesin the study. The dynamic process that Cd2+was transported from solution into cell by livingR. sphaeroideswas characterized by transmission electron microscopy (TEM). Culture time, as an important physiological parameter forR. sphaeroidesgrowth, could significantly control the size of cadmium sulfide nanoparticles. TEM demonstrated that the average sizes of spherical cadmium sulfide nanoparticles were 2.3 ± 0.15, 6.8 ± 0.22, and 36.8 ± 0.25 nm at culture times of 36, 42, and 48 h, respectively. Also, the UV–vis and photoluminescence spectral analysis of cadmium sulfide nanoparticles were performed
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach
This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties
Deadness and how to disprove liveness in hybrid dynamical systems
© 2016 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.tcs.2016.06.009What if we designed a tool to automatically prove the dynamical properties of systems for which analytic proof is difficult or impossible to obtain? Such a tool would represent a significant advance in the understanding of complex dynamical systems with nonlinearities. This is precisely what this paper offers: a solution to the problem of automatically proving some dynamic stability properties of complex systems with multiple discontinuities and modes of operation modelled as hybrid dynamical systems. For this purpose, we propose a reinterpretation of some stability properties from a computational viewpoint, chiefly by using the computer science concepts of safety and liveness. However, these concepts need to be redefined within the framework of hybrid dynamical systems. In computer science terms, here, we consider the problem of automatically disproving the liveness properties of nonlinear hybrid dynamical systems. For this purpose, we define a new property, which we call deadness. This is a dynamically-aware property of a hybrid system which, if true, disproves the liveness property by means of a finite execution. We formally define this property, and give an algorithm which can derive deadness properties automatically for a type of liveness property called inevitability. We show how this algorithm works for three different examples that represent three classes of hybrid systems with complex behaviours.This work has been supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under the framework of the project DYVERSE: A New Kind of Control for Hybrid Systems (EP/I001689/1). The first author also acknowledges the support of the Research Councils UK under the grant EP/E50048/1.Published versio
- …