3,933 research outputs found
On the internal modes in sine-Gordon chain
We address the issue of internal modes of a kink of a discrete sine-Gordon
equation. The main point of the present study is to elucidate how the
antisymmetric internal mode frequency dependence enters the quasicontinuum
spectrum of nonlocalized waves. We analyze the internal frequency dependencies
as functions of both the number of cites and discreteness parameter and explain
the origin of spectrum peculiarity which arises after the frequency dependence
of antisymmetric mode returns back to the continuous spectrum at some nonzero
value of the intersite coupling.Comment: 5 pages, 3 figure
Scattering of vortex pairs in 2D easy-plane ferromagnets
Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of
solitons in two dimensions. We investigate numerically and analytically the
dynamics of such vortex pairs. In particular we simulate numerically the
head-on collision of two pairs with different velocities for a wide range of
the total linear momentum of the system. If the momentum difference of the two
pairs is small, the vortices exchange partners, scatter at an angle depending
on this difference, and form two new identical pairs. If it is large, the pairs
pass through each other without losing their identity. We also study head-tail
collisions. Two identical pairs moving in the same direction are bound into a
moving quadrupole in which the two vortices as well as the two antivortices
rotate around each other. We study the scattering processes also analytically
in the frame of a collective variable theory, where the equations of motion for
a system of four vortices constitute an integrable system. The features of the
different collision scenarios are fully reproduced by the theory. We finally
compare some aspects of the present soliton scattering with the corresponding
situation in one dimension.Comment: 13 pages (RevTeX), 8 figure
Group analysis and renormgroup symmetries
An original regular approach to constructing special type symmetries for
boundary value problems, namely renormgroup symmetries, is presented. Different
methods of calculating these symmetries, based on modern group analysis are
described. Application of the approach to boundary value problems is
demonstrated with the help of a simple mathematical model.Comment: 17 pages, RevTeX LATeX file, to appear in Journal of Mathematical
Physic
Aharonov-Casher effect in a two dimensional hole gas with spin-orbit interaction
We study the quantum interference effects induced by the Aharonov-Casher
phase in a ring structure in a two-dimensional heavy hole (HH) system with
spin-orbit interaction realizable in narrow asymmetric quantum wells. The
influence of the spin-orbit interaction strength on the transport is
investigated analytically. These analytical results allow us to explain the
interference effects as a signature of the Aharonov-Casher Berry phases. Unlike
previous studies on the electron two-dimensional Rashba systems, we find that
the frequency of conductance modulations as a function of the spin-orbit
strength is not constant but increases for larger spin-orbit splittings. In the
limit of thin channel rings (width smaller than Fermi wavelength), we find that
the spin-orbit splitting can be greatly increased due to quantization in the
radial direction. We also study the influence of magnetic field considering
both limits of small and large Zeeman splittings.Comment: 6 pages, 4 figure
Fuzzy interpretation for temporal-difference learning in anomaly detection problems
Nowadays, information control systems based on databases develop dynamically worldwide. These systems are extensively implemented
into dispatching control systems for railways, intrusion detection systems for computer security and other domains centered on big data
analysis. Here, one of the main tasks is the detection and prediction of temporal anomalies, which could be a signal leading to significant (and often critical) actionable information. This paper proposes the new anomaly prevent detection technique, which allows for determining the predictive temporal structures. Presented approach is based on a hybridization of stochastic Markov reward model by using fuzzy production rules, which allow to correct Markov information based on expert knowledge about the process dynamics as well as Markov’s intuition about the probable anomaly occurring. The paper provides experiments showing the efficacy of detection and prediction. In addition, the analogy between new framework and temporal-difference learning for sequence anomaly detection is graphically illustrated.Web of Science64363262
The connection between the radio jet and the gamma-ray emission in the radio galaxy 3C 120
We present the analysis of the radio jet evolution of the radio galaxy 3C 120
during a period of prolonged gamma-ray activity detected by the Fermi satellite
between December 2012 and October 2014. We find a clear connection between the
gamma-ray and radio emission, such that every period of gamma-ray activity is
accompanied by the flaring of the mm-VLBI core and subsequent ejection of a new
superluminal component. However, not all ejections of components are associated
with gamma-ray events detectable by Fermi. Clear gamma-ray detections are
obtained only when components are moving in a direction closer to our line of
sight.This suggests that the observed gamma-ray emission depends not only on
the interaction of moving components with the mm-VLBI core, but also on their
orientation with respect to the observer. Timing of the gamma-ray detections
and ejection of superluminal components locate the gamma-ray production to
within almost 0.13 pc from the mm-VLBI core, which was previously estimated to
lie about 0.24 pc from the central black hole. This corresponds to about twice
the estimated extension of the broad line region, limiting the external photon
field and therefore suggesting synchrotron self Compton as the most probable
mechanism for the production of the gamma-ray emission. Alternatively, the
interaction of components with the jet sheath can provide the necessary photon
field to produced the observed gamma-rays by Compton scattering.Comment: Already accepted for publication in The Astrophysical Journa
Neel to Spin-Glass-like Phase Transition versus Dilution in Geometrically Frustrated ZnCr_{2-2x}Ga_{2x}O_4
ZnCr2O4 undergoes a first order spin-Peierls-like phase transition at 12.5 K
from a cubic spin liquid phase to a tetragonal Neel state. Using powder
diffraction and single crystal polarized neutron scattering, we determined the
complex spin structure of the Neel phase. This phase consisted of several
magnetic domains with different characteristic wave vectors. This indicates
that the tetragonal phase of ZnCr2O4 is very close to a critical point
surrounded by many different Neel states. We have also studied, using elastic
and inelastic neutron scattering techniques, the effect of nonmagnetic dilution
on magnetic correlations in ZnCr_{2-2x}Ga_{2x}O_4 (x=0.05 and 0.3). For x=0.05,
the magnetic correlations do not change qualitatively from those in the pure
material, except that the phase transition becomes second order. For x= 0.3,
the spin-spin correlations become short range. Interestingly, the spatial
correlations of the frozen spins in the x=0.3 material are the same as those of
the fluctuating moments in the pure and the weakly diluted materials
Local redistribution of blood under the effect of fixation stress against a background of hypokinesia
Fixation stress was used as a model of emotional disturbance. The effect of previous restrictions on mobility on the local redistribution of blood resulting from fixation stress was examined. Disturbances in carbohydrate which result from prolonged hypokinesia was studied. Radioactivity was used to determine the local redistribution of blood. Modified factor analysis was used to study the results of the experiment
- …
