31 research outputs found

    (Table 1) Stable carbon and nitrogen isotopic ratios of potential prey species of bearded seals (Erignathus barbatus), Svalbard

    No full text
    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (d13C and d15N) measured in whiskers collected from their newborn pups. The d15N values in the whiskers of individual seals ranged from 11.95 to 17.45 per mil, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals

    (Table 1) Observations of bowhead whales (Balaena mysticetus) in the Svalbard area 1940-2008

    No full text
    Forty-six sightings of bowhead whales have been reported from the Svalbard area between 1940 and 2009. But, only three of these sightings are reported prior to 1980. Most observations involve only one or two whales, but groups of up to seven individuals have been seen recently. Increased ship traffic, particularly cruise-based tourism, in the north undoubtedly provides more opportunities for spotting this species, and the establishment of a structured cetacean sighting programme, as well as increase in effort in documenting sightings from a wider marine user-community, likely all play a role in more records being documented in recent years. The absence of a dedicated monitoring programme for ice-associated cetaceans and the generally low scientific activity level in this field in Svalbard Waters hampers firm conclusions about the trends in abundance of bowhead whales in the Svalbard area

    Stomach content of ringed seals (Pusa hispida) obtained from the Northeast Greenland area

    No full text
    The diet of ringed seals (Pusa hispida) from coastal and offshore areas of Northeast Greenland was determined by identifying, to the lowest taxonomic limit possible, all hard-part contents from the gastrointestinal tract of 51 seals sampled (2002-2004) in spring (April to June, N = 35) and autumn (September to October, N = 16). The autumn diet was characterized by high numbers of Parathemisto libellula, and the spring diet was comprised primarily of polar cod (Boreogadus saida), with few invertebrates consumed. The coastal seal diet samples had a diverse fish prey composition (during both the spring and autumn), whereas the open water seals had eaten mostly crustaceans with P. libellula being most abundant. The sample sizes from the various locations and seasons were not large enough to explore age-class effects on diet in addition. Similar to earlier studies, this study suggests that the ringed seal is a generalist that exploits prey based on availability, with a few key species dominating the diet in an area at least on a seasonal basis

    Rates of seropositivity for Toxoplasma gondii antibodies in polar bears and marine mammals around Svalbard

    No full text
    Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii

    Serum biochemistry and haematology in wild and captive bearded seals (Erignathus barbatus) from Svalbard, Norway

    No full text
    Background: Health assessment of seals in captivity include haematology and serum biochemistry measurements. Because such parameters differ between species, it is crucial to have species-specific reference values for the interpretation of clinical samples. Furthermore, differences in nutrition and environment, life cycles as well as seasonal/annual cycles and varying physiological conditions can potentially affect serum chemistry and haematology parameters. Blood samples from four captive adult bearded seals (initially caught as pups in Svalbard, Norway, now held at Polaria, an Arctic experience centre in Tromsø, Norway) collected over a 16-month period were analyzed for haematology (n=22) and serum chemistry (n=25) parameters. Serum chemistry analyses were also conducted on blood samples from 74 wild bearded seals (1995–2007) collected from Svalbard, Norway. Results: We found higher activity of creatine kinase (CK) and higher concentrations of cortisol in the wild animals when compared to the captive seals, probably reflecting the physical restraint and concomitant stress induced during sampling. For the captive bearded seals, we did not find marked differences in haematology or serum chemistry parameters throughout the different seasons of sampling. Conclusions: This study presents haematology and serum chemistry reference values for captive and wild bearded seals. Comparing physiological parameters for captive seals with wild seals indicated that having wild-caught bearded seals under the conditions offered at Polaria for several years did not markedly affect physiological parameters of the animals, and that training may have helped to alleviate stress associated with blood sampling and veterinary inspection
    corecore