394 research outputs found

    The Virulence Activator AphA Links Quorum Sensing to Pathogenesis and Physiology in Vibrio cholerae by Repressing the Expression of a Penicillin Amidase Gene on the Small Chromosome

    Get PDF
    Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a penicillin V amidase (PVA) gene on the small chromosome. AphA binds to and footprints this site, which overlaps the pva transcriptional start, consistent with its role as a repressor at this promoter. Since aphA expression is under quorum-sensing control, the response regulators LuxO and HapR also influence pva expression. Thus, pva is repressed at low cell density when AphA levels are high, and it is derepressed at high cell density when AphA levels are reduced. Penicillin amidases are thought to function as scavengers for phenylacetylated compounds in the nonparasitic environment. That AphA oppositely regulates the expression of pva from that of virulence, together with the observation that PVA does not play a role in virulence, suggests that these activities are coordinated to serve V. cholerae in different biological niches

    The LysR-Type Virulence Activator AphB Regulates the Expression of Genes in Vibrio Cholerae in Response to Low pH and Anaerobiosis

    Get PDF
    AphB is a LysR-type activator that initiates the expression of the virulence cascade in Vibrio cholerae by cooperating with the quorum-sensing-regulated activator AphA at the tcpPH promoter on the Vibrio pathogenicity island (VPI). To identify the ancestral chromosomal genes in V. cholerae regulated by AphB, we carried out a microarray analysis and show here that AphB influences the expression of a number of genes that are not associated with the VPI. One gene strongly activated by AphB is cadC, which encodes the ToxR-like transcriptional activator responsible for activating the expression of lysine decarboxylase, which plays an important role in survival at low pH. Other genes activated by AphB encode a Na+/H+ antiporter, a carbonic anhydrase, a member of the ClC family of chloride channels, and a member of the Gpr1/Fun34/YaaH family. AphB influences each of these genes directly by recognizing a conserved binding site within their promoters, as determined by gel mobility shift assays. Transcriptional lacZ fusions indicate that AphB activates the expression of these genes under aerobic conditions in response to low pH and also under anaerobic conditions at neutral pH. Further experiments show that the regulation of cadC by AphB in response to low pH and anaerobiosis is mirrored in the heterologous organism Escherichia coli, is independent of the global regulators Fnr and ArcAB, and depends upon the region of the promoter that contains the AphB binding site. These results raise the possibility that the activity of AphB is influenced by the pH and oxygen tension of the environment

    Chikungunya virus nonstructural protein 1 as an antiviral target

    Get PDF
    This PhD thesis is dedicated to the development of novel antiviral agents against Chikungunya virus (CHIKV). CHIKV is a reemerging mosquito-borne virus causing an arthritis-like disease that is characterized by abrupt fever, malaise, and chronic joint and muscle pain. The high morbidity associated with Chikungunya fever and the negative impact on human health underscore the need to develop an effective antiviral therapy and other control measures.This PhD thesis presents a series of experimental studies focused on the identification of novel small molecules with CHIKV inhibitory activity and the elucidation of their mode of action. The results in this thesis demonstrate that CHIKV nonstructural protein 1 (nsP1) represents a suitable target for antiviral drug development. In addition, the potential for developing combination therapy consisting of small molecule inhibitors with different targets for prevention and treatment of CHIKV infections has been explored. The research described in this thesis was performed at the Department of Medical Microbiology of the Leiden University Medical Center, Leiden, the Netherlands and was funded by the Marie Sklodowska-Curie ETN European Training Network “ANTIVIRALS” (EU grant agreement 642434).LUMC / Geneeskund

    Prediction of mechanical performance of acetylated MDF at different humid conditions

    Get PDF
    Change of relative humidity (RH) in surrounding environment can greatly affect the physical and mechanical properties of wood-based panels. Commercially produced acetylated medium density fiberboard (MDF), Medite Tricoya®, was used in this study to predict strength and stiffness under varying humid conditions by separating samples in parallel (//) and perpendicular (⊥) to the sanding directions. Thickness swelling, static moduli of elasticity (MOEstat) and rupture (MORstat), and internal bond (IB) strength were measured at three different humid conditions, i.e., dry (35% RH), standard (65% RH) and wet (85% RH). Internal bond (IB) strength was also measured after accelerated aging test. A resonance method was used to determine dynamic modulus of elasticity (MOEdyn) at the aforementioned humid conditions. Linear regression and finite element (FE) analyses were used to predict the MDF’s static bending behavior. Results showed that dimensional stability, MOEstat, MORstat and IB strength decreased significantly with an increase in RH. No reduction of IB strength was observed after 426 h of accelerated aging test. A multiple regression model was established using MOEdyn and RH values to predict MOEstat and MORstat. In both directions (// and ⊥), highly significant relationships were observed. The predicted and the measured values of MOEstat and MORstat were satisfactorily related to each other, which indicated that the developed model can be effectively used for evaluating the strength and stiffness of Medite Tricoya® MDF samples at any humid condition. Percent errors of two different simulation techniques (standard and extended FE method) showed highly efficient way of simulating the MDF structures with low fidelity

    The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms

    Get PDF
    FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms

    Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation

    Full text link
    The Gram-negative bacterium Vibrio cholerae is the infectious agent responsible for the disease Asiatic cholera. The genes required for V. cholerae virulence, such as those encoding the cholera toxin (CT) and toxin-coregulated pilus (TCP), are controlled by a cascade of transcriptional activators. Ultimately, the direct transcriptional activator of the majority of V. cholerae virulence genes is the AraC/XylS family member ToxT protein, the expression of which is activated by the ToxR and TcpP proteins. Previous studies have identified the DNA sites to which ToxT binds upstream of the ctx operon, encoding CT, and the tcpA operon, encoding, among other products, the major subunit of the TCP. These known ToxT binding sites are seemingly dissimilar in sequence other than being A/T rich. Further results suggested that ctx and tcpA each has a pair of ToxT binding sites arranged in a direct repeat orientation upstream of the core promoter elements. In this work, using both transcriptional lacZ fusions and in vitro copper-phenanthroline footprinting experiments, we have identified the ToxT binding sites between the divergently transcribed acfA and acfD genes, which encode components  of the accessory colonization factor required for efficient intestinal colonization by V. cholerae . Our results indicate that ToxT binds to a pair of DNA sites between acfA and acfD in an inverted repeat orientation. Moreover, a mutational analysis of the ToxT binding sites indicates that both binding sites are required by ToxT for transcriptional activation of both acfA and acfD . Using copper-phenanthroline footprinting to assess the occupancy of ToxT on DNA having mutations in one of these binding sites, we found that protection by ToxT of the unaltered binding site was not affected, whereas protection by ToxT of the mutant binding site was significantly reduced in the region of the mutations. The results of further footprinting experiments using DNA templates having +5 bp and +10 bp insertions between the two ToxT binding sites indicate that both binding sites are occupied by ToxT regardless of their positions relative to each other. Based on these results, we propose that ToxT binds independently to two DNA sites between acfA and acfD to activate transcription of both genes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73166/1/j.1365-2958.2005.04589.x.pd

    Unsaturated Fatty Acid Regulation of AraC/XylS Transcription Factors

    Get PDF

    Small-molecule inhibitors of chikungunya virus: mechanisms of action and antiviral drug resistance

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. We further discuss the current status of the most promising molecules, including in vitro and in vivo findings. In particular, we focus on describing host and/or viral targets, mode of action, and mechanisms of antiviral drug resistance and associated mutations. Knowledge of the key molecular determinants of drug-resistance will aid selection of the most promising antiviral agent(s) for clinical use. For these reasons, we also summarize the available information about drug resistant phenotypes in Aedes mosquito vectors. From this review, it is evident that more of the active molecules need to be evaluated in preclinical and clinical models to address the current lack of antiviral treatment for CHIKF.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Characterization of BreR Interaction with the Bile Response Promoters breAB and breR in Vibrio cholerae

    Get PDF
    The Vibrio cholerae BreR protein is a transcriptional repressor of the breAB efflux system operon, which encodes proteins involved in bile resistance. In a previous study (F. A. Cerda-Maira, C. S. Ringelberg, and R. K. Taylor, J. Bacteriol. 190:7441-7452, 2008), we used gel mobility shift assays to determine that BreR binds at two independent binding sites at the breAB promoter and a single site at its own promoter. Here it is shown, by DNase I footprinting and site-directed mutagenesis, that BreR is able to bind at a distal and a proximal site in the breAB promoter. However, only one of these sites, the proximal 29-bp site, is necessary for BreR-mediated transcriptional repression of breAB expression. In addition, it was determined that BreR represses its own expression by recognizing a 28-bp site at the breR promoter. These sites comprise regions of dyad symmetry within which residues critical for BreR function could be identified. The BreR consensus sequence AANGTANAC-N(6)-GTNTACNTT overlaps the -35 region at both promoters, implying that the repression of gene expression is achieved by interfering with RNA polymerase binding at these promoters
    • …
    corecore