28 research outputs found

    The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones

    Get PDF
    Storm surges are responsible for great damage to coastal property and loss of life every year. Coastal management and adaptation practices are essential to reduce such damage. Numerical models provide a useful tool for informing these practices as they simulate sea level with high spatial resolution. Here we investigate the ability of a barotropic version of the HAMSOM model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. For this purpose, the output of the model is compared to hourly sea level observations from six tide gauge records (Valencia, Barcelona, Marseille, Civitavecchia, Trieste, and Antalya). It is found that the model underestimates the positive extremes significantly at all stations, in some cases by up to 65%. At Trieste, the model can also sometimes overestimate the extremes significantly. The differences between the model and the residuals are not constant for extremes of a given height, which limits the applicability of the numerical model for storm surge forecasting because calibration is difficult. The 50 and 10 year return levels are reasonably well captured by the model at all stations except Barcelona and Marseille, where they are underestimated by over 30%. The number of exceedances of the 99.9th and 99.95% percentiles over a period of 25 years is severely underestimated by the model at all stations. The skill of the model for predicting the timing and value of the storm surges seems to be higher for the events associated with explosive cyclones at all stations

    A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones

    Get PDF
    Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979-2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications

    A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones

    Get PDF
    Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979–2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications.</p

    Climatological aspects of explosive cyclones in the Mediterranean

    No full text
    An objective climatology of explosive cyclones is performed over a 40-year period (1962-2001), for the Mediterranean region with the aid of the Melbourne University automatic cyclone finding and tracking scheme. The major temporal and spatial characteristics of Mediterranean explosive cyclones are investigated, including frequency, movement, generation and dissipation, scale, depth, and intensity. It was verified that the explosive cyclogenesis in the Mediterranean is a rather rare phenomenon that occurs mainly from November to March. Explosive cyclones preferentially form along the northern Mediterranean coast, with maximum density in the Ligurian and Aegean Seas. The cyclogenesis mechanism that predominates in their development is characterized by an interaction of a short and an open long wave in a pre-existing development (referred to as the KF mechanism). There are distinct differences between Western Mediterranean and Eastern Mediterranean explosive cyclones. Although explosive cyclones tend to form in the Western Mediterranean, their scale and depth is greater in the Eastern Mediterranean. Explosive cyclones more likely move from the main cyclogenetic areas in the Western Mediterranean along specific eastward paths over southern Italy and the Ionian Sea where they dissipate or they generate in Eastern Mediterranean and move north-eastwards to the Black Sea or eastwards to Cyprus and Middle East. © 2010 Royal Meteorological Society

    A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean

    No full text
    The dynamic and kinematic characteristics of surface explosive cyclones in the Mediterranean are examined and compared to those of ordinary cyclones. The cyclone detection is performed with the tracking algorithm developed in the University of Melbourne, using the 1° × 1° ERA-40 mean sea level pressure dataset for a 40 year period. It is verified that the explosive cyclogenesis in the Mediterranean is mainly a maritime phenomenon, occurring along the northern Mediterranean coast during the cold season. On the contrary, the ordinary cyclogenesis exhibits significant maxima in both continental and maritime environments throughout the year. The explosive cyclones are characterized by longer lifetime and greater propagation speed. They are larger and deeper in the eastern Mediterranean, whereas the ordinary cyclones are deeper in the western and larger in the eastern Mediterranean. The trend analysis revealed that both explosive and ordinary cyclones become less frequent in the Mediterranean basin, while there is a tendency for deeper ordinary cyclones over North Africa and shallower over the Aegean Sea and Cyprus. © 2013, Springer-Verlag Berlin Heidelberg

    On the vertical structure of Mediterranean explosive cyclones

    No full text
    An attempt is made to explore the vertical structure of the surface explosive cyclones in the Mediterranean on a climatological basis during the cold period of the year in order to get a better insight in the interaction between the upper and lower levels responsible for the genesis and evolvement of the phenomenon. The vertical profile of the explosive cyclones was examined with the aid of the vertical tracing software of the University of Melbourne Cyclone Tracking Algorithm, using the 1 × 1° spatial resolution of ERA-40 reanalysis data. It was found that about 57 % of the track steps of surface explosive cyclones extend up to 500 hPa. The north-westward tilting of the surface cyclones with height during the stage of explosive cyclogenesis, with a mean distance of 350 km between mean sea and 500 hPa levels, confirms the importance of baroclinicity. About 45 % of the surface explosive cyclones reached their maximum depth before their 500 hPa counterparts, implying the role of surface processes. © 2012 Springer-Verlag

    Seasonal aspects of an objective climatology of anticyclones affecting the mediterranean

    No full text
    An objective climatology of anticyclones over the greater Mediterranean region is presented based on the Interim ECMWF Re-Analysis (ERA-Interim) for a 34-yr period (1979-2012) and the Melbourne University automatic identification and tracking algorithm. The scheme&apos;s robustness and reliability for the transient extratropical propagation of anticyclones, with the appropriate choices of parameter settings, has been established and the results obtained here present new research perspectives on anticyclonic activity affecting the Mediterranean. Properties of Mediterranean anticyclones, such as frequency, generation and dissipation, movement, scale, and depth are investigated. The highest frequency of anticyclones is found over continental areas, while the highest maritime frequency occurs over closed basins exhibiting also maxima of anticyclogenesis. There is a significant seasonality in system density and anticyclogenesis maxima, this being associated with the seasonal variations of the larger-scale atmospheric circulation that affect the greater Mediterranean region. © 2014 American Meteorological Society

    Development of a Front Identification Scheme for Compiling a Cold Front Climatology of the Mediterranean

    No full text
    The objective of this work is the development of an automated and objective identification scheme of cold fronts in order to produce a comprehensive climatology of Mediterranean cold fronts. The scheme is a modified version of The University of Melbourne Frontal Tracking Scheme (FTS), to take into account the particular characteristics of the Mediterranean fronts. We refer to this new scheme as MedFTS. Sensitivity tests were performed with a number of cold fronts in the Mediterranean using different threshold values of wind-related criteria in order to identify the optimum scheme configuration. This configuration was then applied to a 10-year period, and its skill was assessed against synoptic surface charts using statistic metrics. It was found that the scheme performs well with the dynamic criteria employed and can be successfully applied to cold front identification in the Mediterranean

    Assessing characteristics of Mediterranean explosive cyclones for different data resolution

    No full text
    A comparison of two objective climatologies of explosive cyclones in the Mediterranean region is performed. The results are derived from two different mean sea-level pressure reanalysis data resolutions, but from the same assimilation model, in order to quantify the pure impact of higher resolution on the identification and characteristics of explosive cyclones, when the assimilation model is the same. The explosive cyclones were identified with the aid of the Melbourne University automatic cyclone finding and tracking scheme over a 40-year period, using the 6-hourly analyses of ERA-40 mean sea-level pressure (MSLP) on: (a) 2.5 × 2.5 and (b) 1 × 1 latitude-longitude grid. The comparison of the two datasets revealed the significant role of the increase in spatial resolution of MSLP data on the identification and tracking process, and the number of the explosive cyclones in the high-resolution dataset is almost four times greater than the respective one in the lower resolution dataset. However, the comparison of explosive cyclone characteristics, including spatial and temporal variations of explosive deepening, revealed differences in the geographical distribution of the location of the maximum explosive deepening and average explosive cyclone Laplacian of the central pressure. These differences are due to the identification in the higher resolution set of smaller scale and secondary explosives along the strongly baroclinic northern Mediterranean boundaries, south of the Alps and the Pyrenees. Explosive deepening appears a bias to the daytime period from 12 to 18 Coordinated Universal Time (UTC) for both datasets, which is more prominent in the LR dataset. Statistically significant difference of pressure tendency between the two datasets appear for the daytime period from 06 to 12 UTC, accounting for better representation of orographic forcing in the HR dataset. © 2011 Springer-Verlag
    corecore