22 research outputs found
Large-Scale Carbonate Platform Development of Cay Sal Bank, Bahamas, and Implications for Associated Reef Geomorphology
The Bahama Archipelago consists of an arcuate chain of carbonate platforms. Average water depths on the platform-tops, such as the Great Bahama Bank (GBB), are typically 10 m or less, with coral reef-rimmed margins, thick sediment accumulations, and the frequent occurrence of islands. There are, however, exceptions. For example, Cay Sal Bank (CSB), a little studied detached Bahamian carbonate platform with depths ranging from 30 to 7 m, is only slightly deeper than the GBB, but devoid of islands, lacks platform-margin coral reefs and holds little sediment on the platform-top; the platform is incipiently drowned. CSB is interesting as it is conspicuously larger (6000 sq. km) than other incipiently drowned platforms in the region, such as Serranilla Bank (1100 sq. km) and the Cat Island platform (1500 sq. km). Field and remote sensing data are assembled to provide insight into the sedimentology and geomorphology of the CSB. The influence of ocean climate, regional hydrodynamics, and Holocene flooding history are investigated to understand why platform-margin coral reef growth on CSB has been unable to keep pace with Holocene sea-level rise. A decade of regional sea-surface temperature data for the Bahamas report CSB to be situated in the same ocean climate regime as GBB. Temperature cannot explain the platform\u27s different morphologies. The Florida Current has been evoked as a possible reason for the immature development of platform-top processes on the CSB, but numeric modeling suggests its influence to be restricted to the deep flanks of the bank. Further, sediment distribution on CSB, including infill patterns of karst depressions, suggest trade winds (easterlies) to drive platform-top hydrodynamics. By assembling a satellite-derived bathymetry map, it can be shown that CSB flooded earlier and at relatively higher rates of Holocene sea-level rise than its neighboring platforms. Flooding history is identified as the most feasible explanation for the atypical morphology of the CSB. By contrasting the present-day morphology of the CSB and the GBB, the work emphasizes how subtle differences in relative sea-level history can influence the growth of platform-margin coral reefs, features that in turn can conspire to set even closely neighboring carbonate platforms on divergent paths with regard to the development of marine landforms. This insight is relevant to interpreting the morphological diversity of carbonate platforms in the modern ocean and in the rock record
Model-observations synergy in the coastal ocean
Integration of observations of the coastal ocean continuum, from regional oceans to shelf seas and estuaries/deltas with models, can substantially increase the value of observations and enable a wealth of applications. In particular, models can play a critical role at connecting sparse observations, synthesizing them, and assisting the design of observational networks; in turn, whenever available, observations can guide coastal model development. Coastal observations should sample the two-way interactions between nearshore, estuarine and shelf processes and open ocean processes, while accounting for the different pace of circulation drivers, such as the fast atmospheric, hydrological and tidal processes and the slower general ocean circulation and climate scales. Because of these challenges, high-resolution models can serve as connectors and integrators of coastal continuum observations. Data assimilation approaches can provide quantitative, validated estimates of Essential Ocean Variables in the coastal continuum, adding scientific and socioeconomic value to observations through applications (e.g., sea-level rise monitoring, coastal management under a sustainable ecosystem approach, aquaculture, dredging, transport and fate of pollutants, maritime safety, hazards under natural variability or climate change). We strongly recommend an internationally coordinated approach in support of the proper integration of global and coastal continuum scales, as well as for critical tasks such as community-agreed bathymetry and coastline products
Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level
A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, âCEASELESSâ). JW was supported by EU Horizon 2020 Grant 633211, Atlantos
Seasonal and Interannual Variability of the North-Western Black Sea Ecosystem
This study describes the coupling between physical and biogeochemical models and analyses the response of the ecosystem in the north-western Black Sea to nutrient loads and climate changes. The basic physical and biological dynamics of the upper north-western Black Sea is illustrated as well. The physical model is based on the Princeton Ocean Model (POM); additionally, a parameterisation of mixed layer is included. The biogeochemical model is based on the European Regional Sea Ecosystem Model (ERSEM) and consists of five modules: (1) primary producers, (2) microbial loop, (3) mesozooplankton, (4) benthic nutrients, and (5) benthic biology. The ecosystem in ERSEM is subdivided into three functional types, producers (phytoplankton), decomposers (pelagic and benthic bacteria) and consumers (zooplankton and zoobenthos). Model-data comparisons have been performed for both calibrating and verifying coupled model simulations. We address here the impact of nutrient discharge from the Danube River on the functioning of the biological system. The evolution of the mixed layer, as well as the response of the biological system to variability of the nutrient discharge from the Danube River is described in detail. Several scenarios have been developed to study the impact which nutrient reduction has on the coastal marine system. The model predictions indicate that the biological system is very sensitive to the changes in nutrient concentrations, as well as to their ratios
Recommended from our members
Flow structures over mesophotic coral ecosystems in the eastern Gulf of Mexico
Simultaneous time series of current velocity profiles are used to characterize flow structures over intermediate-depth coral ecosystems in the eastern Gulf of Mexico. Understanding of temporal variability and spatial coherence in flow is necessary to establish connectivity among these ecosystems. Time series were collected at Pulley Ridge (the westernmost site), Northern Dry Tortugas, and Southern Dry Tortugas. Overlapping data spanned the period from March 22, 2013 to June 20, 2015. The strongest currents were approximately 1 m s-1 southeastward at Pulley Ridge. Subtidal velocities from the three sites were decomposed into real-vector, concatenated empirical orthogonal functions (EOFs). Results from EOFs indicated that Mode 1, which explained 63% of the subtidal variance, was roughly in the same direction at each of the three sites. Mode 1 directionality indicated potential interconnectivity between Pulley Ridge and Southern Dry Tortugas, and between Northern Dry Tortugas and Pulley Ridge. Mode 1 also suggested limited to no connectivity between the two Dry Tortugas sites as the flows over the two sites were parallel. Mode 2 explained close to 24% of the variance and showed incoherence among the three sites. Wavelet analysis of EOF coefficients indicated dominance of >1 week variability in this region. Flow variability may be associated with wind forcing and Loop Current variability as confirmed by satellite altimetry. Wind forcing caused part of the intra-monthly (1 month) periods. The relationship was more robust, but inverse, when comparing sea level off the northwestern coast of Cuba to the Mode 1 of the currents. These results characterize physical connectivity among South Florida coral ecosystems and have biophysical implications for coral fish populations.
âąFlow profiles at 3 sites over mesophotic corals of the SW Florida Shelf were influenced by a looping western boundary current during ~2.5 years.âąFlow profiles had most of their variance represented by nearly depth-independent flows moving roughly in the same direction at the 3 sites sampled.âąThe Loop Current affected flows at sub-monthly periodicities (>1 month) but winds influenced flows at intra-monthly periodicities (<1 month)
Recommended from our members
"A Dialogue on Coastal Cities and Coastal Community Resilience": results of engagement
On February 22nd, 2024, the DCC-CR convened a town hall meeting titled âA Dialogue on Coastal Cities and Coastal Community Resilience,â in the framework of the Ocean Sciences Meeting 2024 in New Orleans, Louisiana. This town hall meeting aimed to bring together expertise from the scientific community supporting the Ocean Decade and merge it with the experiences of coastal communities and practitioners. The discussions and exchanges among the expert speakers focused on various topics, from the need to effectively translate scientific findings into actionable science, to new perspectives and strategies to involve communities into the knowledge production process through citizen science initiatives, communication strategies and new partnerships.
During the exchanges among the speakers in preparation for the town hall, key recommendations for the scientific community emerged. These recommendations aim to provide guidance, particularly for the upcoming 'Cities with the Ocean' initiative, developed within the UN Ocean Decade framework, which seeks to establish a network of coastal cities and promote dialogue with Ocean Decade Actions, fostering the development of shared solutions and strategies for coastal adaptation. To assess the validity of these recommendations and the effectiveness of proposed actions and strategies, we actively involved the audience attending the town hall, in large part representing the scientific community, through Slido to gather real-time inputs and feedback
Recommended from our members
OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction
Abstract Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%â100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed
The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys
Mesophotic coral reef ecosystems are remote from coastal stressors, but are still vulnerable to over-exploitation, and remain mostly unprotected. They may be the key to coral reefs resilience, yet little is known about the pattern of larval subsidies from deeper to shallower coral reef habitats. Here we use a biophysical modeling approach to test the hypothesis that fishes from mesophotic coral reef ecosystems may replenish shallow reef populations. We aim at identifying the spatio-temporal patterns and underlying mechanisms of larval connections between Pulley Ridge, a mesophotic reef in the Gulf of Mexico hosting of a variety of shallow-water tropical fishes, and the Florida Keys reefs. A new three-dimensional (3D) polygon habitat module is developed for the open-source Connectivity Modeling System to simulate larval movement behavior of the bicolor damselfish, Stegastes partitus, in a realistic 3D representation of the coral reef habitat. Biological traits such as spawning periodicity, mortality, and vertical migration are also incorporated in the model. Virtual damselfish larvae are released daily from the Pulley Ridge at 80m depth over 60 lunar spawning cycles and tracked until settlement within a fine resolution (~900m) hydrodynamic model of the region. Such probabilistic simulations reveal mesophotic-shallow connections with large, yet sporadic pulses of larvae settling in the Florida Keys. Modal and spectral analyses on the spawning time of successful larvae, and on the position of the Florida Current front with respect to Pulley Ridge, demonstrate that specific physical-biological interactions modulate these âperfect stormâ events. Indeed, the co-occurrence of (1) peak spawning with frontal features, and (2) cyclonic eddies with ontogenetic vertical migration, contribute to high settlement in the Florida Keys. This study demonstrates that mesophotic coral reef ecosystems can also serve as refugia for coral reef fish and suggests that they have a critical role in the resilience of shallow reef communities.
âąMesophotic reefs can act as refugia for coral reef fishâąDeep-shallow connections are modulated by physical mechanismsâąPulley Ridge mesophotic reef and Florida Keys shallow reefs are sporadically connectedâąPhysical-Biological interactions influence deep-shallow connection
Recommended from our members
Measuring oil residence time with GPS-drifters, satellites, and Unmanned Aerial Systems (UAS)
As oil production worldwide continues to increase, particularly in the Gulf of Mexico, marine oil spill preparedness relies on deeper understanding of surface oil spill transport science. This paper describes experiments carried out on a chronic release of crude oil and aims to understand the residence time of oil slicks using a combination of remote sensing platforms and GPS tracked drifters. From April 2017 to August 2018, we performed multiple synchronized deployments of drogued and un-drogued drifters to monitor the life time (residence time) of the surface oil slicks originated from the MC20 spill site, located close to the Mississippi Delta. The hydrodynamic design of the two types of drifters allowed us to compare their performance differences. We found the un-drogued drifter to be more appropriate to measure the speed of oil transport. Drifter deployments under various wind conditions show that stronger winds lead to reduce the length of the slick, presumably because of an increase in the evaporation rate and entrainment of oil in the water produced by wave action. We have calculated the residence time of oil slicks at MC20 site to be between 4 and 28âŻh, with average wind amplitude between 3.8 and 8.8âŻm/s. These results demonstrate an inverse linear relationship between wind strength and residence time of the oil, and the average residence time of the oil from MC20 is 14.9âŻh.
âąSatellite remote sensing can be used to track oil displacement.âąGPS tracked drifters and UAS can be used to estimate the oil residence time.âąWind strength is inversely correlated to oil time residence.âąRiver plumes will influence the oil transport despite wind and currents
North Atlantic Ocean OSSE system: Evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems
Observing System Simulated Experiments (OSSEs) performed during the 2014 North Atlantic hurricane season quantify ocean observing system impacts with respect to improving ocean model initialisation in coupled tropical cyclone (TC) prediction systems. The suitability of the OSSE system forecast model (FM) with respect to the previously validated Nature Run is demonstrated first. Analyses are then performed to determine the calibration required to obtain credible OSSE impact assessments. Impacts on errors and biases in fields important to TC prediction are first quantified for three major components of the existing operational ocean observing system. Satellite altimetry provides the greatest positive impact, followed by Argo floats and sea surface temperature measurements from both satellite and in-situ systems. The OSSE system is then used to investigate observing system enhancements, specifically regional underwater glider deployments during the 2014 hurricane season. These deployments resulted in modest positive impacts on ocean analyses that were limited by (1) errors in the horizontal structure of the increment field imposed by individual gliders and (2) memory loss in the spreading of these corrections by nonlinear model dynamics. The high-resolution, three-dimensional representation of the truth available in OSSE systems allows these issues to be studied without high-density ocean observations