22 research outputs found

    Large-Scale Carbonate Platform Development of Cay Sal Bank, Bahamas, and Implications for Associated Reef Geomorphology

    Get PDF
    The Bahama Archipelago consists of an arcuate chain of carbonate platforms. Average water depths on the platform-tops, such as the Great Bahama Bank (GBB), are typically 10 m or less, with coral reef-rimmed margins, thick sediment accumulations, and the frequent occurrence of islands. There are, however, exceptions. For example, Cay Sal Bank (CSB), a little studied detached Bahamian carbonate platform with depths ranging from 30 to 7 m, is only slightly deeper than the GBB, but devoid of islands, lacks platform-margin coral reefs and holds little sediment on the platform-top; the platform is incipiently drowned. CSB is interesting as it is conspicuously larger (6000 sq. km) than other incipiently drowned platforms in the region, such as Serranilla Bank (1100 sq. km) and the Cat Island platform (1500 sq. km). Field and remote sensing data are assembled to provide insight into the sedimentology and geomorphology of the CSB. The influence of ocean climate, regional hydrodynamics, and Holocene flooding history are investigated to understand why platform-margin coral reef growth on CSB has been unable to keep pace with Holocene sea-level rise. A decade of regional sea-surface temperature data for the Bahamas report CSB to be situated in the same ocean climate regime as GBB. Temperature cannot explain the platform\u27s different morphologies. The Florida Current has been evoked as a possible reason for the immature development of platform-top processes on the CSB, but numeric modeling suggests its influence to be restricted to the deep flanks of the bank. Further, sediment distribution on CSB, including infill patterns of karst depressions, suggest trade winds (easterlies) to drive platform-top hydrodynamics. By assembling a satellite-derived bathymetry map, it can be shown that CSB flooded earlier and at relatively higher rates of Holocene sea-level rise than its neighboring platforms. Flooding history is identified as the most feasible explanation for the atypical morphology of the CSB. By contrasting the present-day morphology of the CSB and the GBB, the work emphasizes how subtle differences in relative sea-level history can influence the growth of platform-margin coral reefs, features that in turn can conspire to set even closely neighboring carbonate platforms on divergent paths with regard to the development of marine landforms. This insight is relevant to interpreting the morphological diversity of carbonate platforms in the modern ocean and in the rock record

    Model-observations synergy in the coastal ocean

    Get PDF
    Integration of observations of the coastal ocean continuum, from regional oceans to shelf seas and estuaries/deltas with models, can substantially increase the value of observations and enable a wealth of applications. In particular, models can play a critical role at connecting sparse observations, synthesizing them, and assisting the design of observational networks; in turn, whenever available, observations can guide coastal model development. Coastal observations should sample the two-way interactions between nearshore, estuarine and shelf processes and open ocean processes, while accounting for the different pace of circulation drivers, such as the fast atmospheric, hydrological and tidal processes and the slower general ocean circulation and climate scales. Because of these challenges, high-resolution models can serve as connectors and integrators of coastal continuum observations. Data assimilation approaches can provide quantitative, validated estimates of Essential Ocean Variables in the coastal continuum, adding scientific and socioeconomic value to observations through applications (e.g., sea-level rise monitoring, coastal management under a sustainable ecosystem approach, aquaculture, dredging, transport and fate of pollutants, maritime safety, hazards under natural variability or climate change). We strongly recommend an internationally coordinated approach in support of the proper integration of global and coastal continuum scales, as well as for critical tasks such as community-agreed bathymetry and coastline products

    Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level

    Get PDF
    A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos

    Seasonal and Interannual Variability of the North-Western Black Sea Ecosystem

    No full text
    This study describes the coupling between physical and biogeochemical models and analyses the response of the ecosystem in the north-western Black Sea to nutrient loads and climate changes. The basic physical and biological dynamics of the upper north-western Black Sea is illustrated as well. The physical model is based on the Princeton Ocean Model (POM); additionally, a parameterisation of mixed layer is included. The biogeochemical model is based on the European Regional Sea Ecosystem Model (ERSEM) and consists of five modules: (1) primary producers, (2) microbial loop, (3) mesozooplankton, (4) benthic nutrients, and (5) benthic biology. The ecosystem in ERSEM is subdivided into three functional types, producers (phytoplankton), decomposers (pelagic and benthic bacteria) and consumers (zooplankton and zoobenthos). Model-data comparisons have been performed for both calibrating and verifying coupled model simulations. We address here the impact of nutrient discharge from the Danube River on the functioning of the biological system. The evolution of the mixed layer, as well as the response of the biological system to variability of the nutrient discharge from the Danube River is described in detail. Several scenarios have been developed to study the impact which nutrient reduction has on the coastal marine system. The model predictions indicate that the biological system is very sensitive to the changes in nutrient concentrations, as well as to their ratios

    The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys

    No full text
    Mesophotic coral reef ecosystems are remote from coastal stressors, but are still vulnerable to over-exploitation, and remain mostly unprotected. They may be the key to coral reefs resilience, yet little is known about the pattern of larval subsidies from deeper to shallower coral reef habitats. Here we use a biophysical modeling approach to test the hypothesis that fishes from mesophotic coral reef ecosystems may replenish shallow reef populations. We aim at identifying the spatio-temporal patterns and underlying mechanisms of larval connections between Pulley Ridge, a mesophotic reef in the Gulf of Mexico hosting of a variety of shallow-water tropical fishes, and the Florida Keys reefs. A new three-dimensional (3D) polygon habitat module is developed for the open-source Connectivity Modeling System to simulate larval movement behavior of the bicolor damselfish, Stegastes partitus, in a realistic 3D representation of the coral reef habitat. Biological traits such as spawning periodicity, mortality, and vertical migration are also incorporated in the model. Virtual damselfish larvae are released daily from the Pulley Ridge at 80m depth over 60 lunar spawning cycles and tracked until settlement within a fine resolution (~900m) hydrodynamic model of the region. Such probabilistic simulations reveal mesophotic-shallow connections with large, yet sporadic pulses of larvae settling in the Florida Keys. Modal and spectral analyses on the spawning time of successful larvae, and on the position of the Florida Current front with respect to Pulley Ridge, demonstrate that specific physical-biological interactions modulate these “perfect storm” events. Indeed, the co-occurrence of (1) peak spawning with frontal features, and (2) cyclonic eddies with ontogenetic vertical migration, contribute to high settlement in the Florida Keys. This study demonstrates that mesophotic coral reef ecosystems can also serve as refugia for coral reef fish and suggests that they have a critical role in the resilience of shallow reef communities. ‱Mesophotic reefs can act as refugia for coral reef fish‱Deep-shallow connections are modulated by physical mechanisms‱Pulley Ridge mesophotic reef and Florida Keys shallow reefs are sporadically connected‱Physical-Biological interactions influence deep-shallow connection

    North Atlantic Ocean OSSE system: Evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems

    No full text
    Observing System Simulated Experiments (OSSEs) performed during the 2014 North Atlantic hurricane season quantify ocean observing system impacts with respect to improving ocean model initialisation in coupled tropical cyclone (TC) prediction systems. The suitability of the OSSE system forecast model (FM) with respect to the previously validated Nature Run is demonstrated first. Analyses are then performed to determine the calibration required to obtain credible OSSE impact assessments. Impacts on errors and biases in fields important to TC prediction are first quantified for three major components of the existing operational ocean observing system. Satellite altimetry provides the greatest positive impact, followed by Argo floats and sea surface temperature measurements from both satellite and in-situ systems. The OSSE system is then used to investigate observing system enhancements, specifically regional underwater glider deployments during the 2014 hurricane season. These deployments resulted in modest positive impacts on ocean analyses that were limited by (1) errors in the horizontal structure of the increment field imposed by individual gliders and (2) memory loss in the spreading of these corrections by nonlinear model dynamics. The high-resolution, three-dimensional representation of the truth available in OSSE systems allows these issues to be studied without high-density ocean observations
    corecore