6 research outputs found

    IRIS Observations of Spicules and Structures Near the Solar Limb

    Full text link
    We have analyzed IRIS spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum, from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2 arc sec. We discuss the spatio-temporal structure near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow moving bright features in O i and fast moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model developed at the Institut d'Astrophysique Spatiale and estimated values of the physical parameters. We obtain electron temperatures in the range of ∌8000\sim8000 K at small heights to ∌20000\sim20000 K at large heights, electron densities from 1.1×10111.1 \times 10^{11} to 4×10104 \times 10^{10} cm−3^{-3} and a turbulent velocity of ∌24\sim24km/s.Comment: Accepted for publication in Solar Physic

    Movies

    No full text
    Movies from "Evidence for two-loop interaction from IRIS and SDO observations of penumbral brightenings", 2017, Astronomy and Astrophysics, in pres

    Analyzing the propagation of EUV waves and their connection with type II radio bursts by combining numerical simulations and multi-instrument observations

    No full text
    Context. EUV (EIT) waves are wavelike disturbances of enhanced extreme ultraviolet (EUV) emission that propagate away from an eruptive active region across the solar disk. Recent years have seen much debate over their nature, with three main interpretations: the fast-mode magneto-hydrodynamic (MHD) wave, the apparent wave (reconfiguration of the magnetic field), and the hybrid wave (combination of the previous two). Aims. By studying the kinematics of EUV waves and their connection with type II radio bursts, we aim to examine the capability of the fast-mode interpretation to explain the observations, and to constrain the source locations of the type II radio burst emission. Methods. We propagate a fast-mode MHD wave numerically using a ray-tracing method and the WKB (Wentzel-Kramers-Brillouin) approximation. The wave is propagated in a static corona output by a global 3D MHD Coronal Model, which provides density, temperature, and Alfvén speed in the undisturbed coronal medium (before the eruption). We then compare the propagation of the computed wave front with the observed wave in EUV images (PROBA2/SWAP, SDO/AIA). Lastly, we use the frequency drift of the type II radio bursts to track the propagating shock wave, compare it with the simulated wave front at the same instant, and identify the wave vectors that best match the plasma density deduced from the radio emission. We apply this methodology for two EUV waves observed during SOL2017-04-03T14:20:00 and SOL2017-09-12T07:25:00. Results. The simulated wave front displays a good qualitative match with the observations for both events. Type II radio burst emission sources are tracked on the wave front all along its propagation. The wave vectors at the ray-path points that are characterized as sources of the type II radio burst emission are quasi-perpendicular to the magnetic field. Conclusions. We show that a simple ray-tracing model of the EUV wave is able to reproduce the observations and to provide insight into the physics of such waves. We provide supporting evidence that they are likely fast-mode MHD waves. We also narrow down the source region of the radio burst emission and show that different parts of the wave front are responsible for the type II radio burst emission at different times of the eruptive event

    Firefly: The Case for a Holistic Understanding of the Global Structure and Dynamics of the Sun and the Heliosphere

    No full text
    This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere
    corecore