123 research outputs found

    Overfitting in quantum machine learning and entangling dropout

    Full text link
    The ultimate goal in machine learning is to construct a model function that has a generalization capability for unseen dataset, based on given training dataset. If the model function has too much expressibility power, then it may overfit to the training data and as a result lose the generalization capability. To avoid such overfitting issue, several techniques have been developed in the classical machine learning regime, and the dropout is one such effective method. This paper proposes a straightforward analogue of this technique in the quantum machine learning regime, the entangling dropout, meaning that some entangling gates in a given parametrized quantum circuit are randomly removed during the training process to reduce the expressibility of the circuit. Some simple case studies are given to show that this technique actually suppresses the overfitting.Comment: 7 pages, 8 figure

    Quantitative laser diffraction method for the assessment of protein subvisible particles

    Get PDF
    Shinichiro Totoki, Gaku Yamamoto, Kouhei Tsumoto, Susumu Uchiyama, Kiichi Fukui. Quantitative Laser Diffraction Method for the Assessment of Protein Subvisible Particles. Journal of Pharmaceutical Sciences, Volume 104, Issue 2, 2015, Pages 618-626. https://doi.org/10.1002/jps.24288

    Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts

    Get PDF
    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer\u27s disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained Nε-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases. © 2013 The Royal Society of Chemistry

    Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold

    Get PDF
    Cells, growth factors, and scaffolds are the three main factors required to create a tissue-engineered construct. After the appearance of bovine spongiform encephalopathy (BSE), considerable attention has therefore been focused on nonbovine materials. In this study, we examined the properties of a chitosan porous scaffold. A porous chitosan sponge was prepared by the controlled freezing and lyophilization of different concentrations of chitosan solutions. The materials were examined by scanning electron microscopy, and the porosity, tensile strength, and basic fibroblast growth factor (bFGF) release profiles from chitosan sponge were examined in vitro. The morphology of the chitosan scaffolds presented a typical microporous structure, with the pore size ranging from 50 to 200 m. The porosity of chitosan scaffolds with different concentrations was approximately 75-85%. A decreasing tendency for porosity was observed as the concentration of the chitosan increased. The relationship between the tensile properties and chitosan concentration indicated that the ultimate tensile strength for the sponge increased with a higher concentration. The in vitro bFGF release study showed that the higher the concentration of chitosan solution became, the longer the releasing time of the bFGF from the chitosan sponge was

    Impact of genetic alterations on central nervous system progression of primary vitreoretinal lymphoma

    Get PDF
    Primary vitreoretinal lymphoma (PVRL) is a rare malignant lymphoma subtype with an unfavorable prognosis due to frequent central nervous system (CNS) progression. Thus, identifying factors associated with CNS progression is essential for improving the prognosis of PVRL patients. Accordingly, we conducted a comprehensive genetic analysis using archived vitreous humor samples of 36 PVRL patients diagnosed and treated at our institution and retrospectively examined the relationship between genetic alterations and CNS progression. Whole-exome sequencing (n = 2) and amplicon sequencing using a custom panel of 107 lymphomagenesis-related genes (n = 34) were performed to assess mutations and copy number alterations. The median number of pathogenic genetic alterations per case was 12 (range: 0– 22). Pathogenic genetic alterations of CDKN2A, MYD88, CDKN2B, PRDM1, PIM1, ETV6, CD79B, and IGLL5, as well as aberrant somatic hypermutations, were frequently detected. The frequency of ETV6 loss and PRDM1 alteration (mutation and loss) was 23% and 49%, respectively. Multivariate analysis revealed ETV6 loss (hazard ratio [HR]: 3.26, 95% confidence interval [CI]: 1.08–9.85) and PRDM1 alteration (HR: 2.52, 95% CI: 1.03–6.16) as candidate risk factors associated with CNS progression of PVRL. Moreover, these two genetic factors defined slow-, intermediate-, and rapid-progression groups (0, 1, and 2 factors, respectively), and the median period to CNS progression differed significantly among them (52 vs. 33 vs. 20 months, respectively). Our findings suggest that genetic factors predict the CNS progression of PVRL effectively, and the genetics-based CNS progression model might lead to stratification of treatment

    Early-stage antibody kinetics after the third dose of BNT162b2 mRNA COVID-19 vaccination measured by a point-of-care fingertip whole blood testing

    Get PDF
    Amid the Coronavirus Disease 2019 pandemic, we aimed to demonstrate the accuracy of the fingertip whole blood sampling test (FWT) in measuring the antibody titer and uncovering its dynamics shortly after booster vaccination. Mokobio SARS-CoV-2 IgM & IgG Quantum Dot immunoassay (Mokobio Biotechnology R&D Center Inc., MD, USA) was used as a point-of-care FWT in 226 health care workers (HCWs) who had received two doses of the BNT162b2 mRNA vaccine (Pfizer-BioNTech) at least 8 months prior. Each participant tested their antibody titers before and after the third-dose booster up to 14-days. The effect of the booster was observed as early as the fourth day after vaccination, which exceeded the detection limit (>30,000 U/mL) by 2.3% on the fifth day, 12.2% on the sixth day, and 22.5% after the seventh day. Significant positive correlations were observed between the pre- and post-vaccination (the seventh and eighth days) antibody titers (correlation coefficient, 0.405; p<0.001). FWT is useful for examining antibody titers as a point-of-care test. Rapid response of antibody titer started as early as the fourth day post-vaccination, while the presence of weak responders to BNT162b2 vaccine was indicated

    Evolution of Developmental Programs for the Midline Structures in Chordates: Insights From Gene Regulation in the Floor Plate and Hypochord Homologues of Ciona Embryos

    Get PDF
    In vertebrate embryos, dorsal midline tissues, including the notochord, the prechordal plate, and the floor plate, play important roles in patterning of the central nervous system, somites, and endodermal tissues by producing extracellular signaling molecules, such as Sonic hedgehog (Shh). In Ciona, hedgehog.b, one of the two hedgehog genes, is expressed in the floor plate of the embryonic neural tube, while none of the hedgehog genes are expressed in the notochord. We have identified a cis-regulatory region of hedgehog.b that was sufficient to drive a reporter gene expression in the floor plate. The hedgehog.b cis-regulatory region also drove ectopic expression of the reporter gene in the endodermal strand, suggesting that the floor plate and the endodermal strand share a part of their gene regulatory programs. The endodermal strand occupies the same topographic position of the embryo as does the vertebrate hypochord, which consists of a row of single cells lined up immediately ventral to the notochord. The hypochord shares expression of several genes with the floor plate, including Shh and FoxA, and play a role in dorsal aorta development. Whole-embryo single-cell transcriptome analysis identified a number of genes specifically expressed in both the floor plate and the endodermal strand in Ciona tailbud embryos. A Ciona FoxA ortholog FoxA.a is shown to be a candidate transcriptional activator for the midline gene battery. The present findings suggest an ancient evolutionary origin of a common developmental program for the midline structures in Olfactores

    The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce

    Get PDF
    Pseudomonas cichorii causes necrotic lesions in eggplant and rot in lettuce. Through transposon insertion into P. cichorii strain SPC9018 we produced two mutants, 4-57 and 2-99, that lost virulence on eggplant but not lettuce. Analyses showed that a transposon was inserted into the hrpG gene in 4-57 and the hrcT gene in 2-99. Nucleotide sequences of the hrp genes of SPC9018 are homologous to those of Pseudomonas viridiflava BS group strains. The pathogenicity of 4-57 on eggplant was restored by transformation with an hrpF operon, originating from either SPC9018 or the BS group member P. viridiflava strain 9504 (Pv9504). These data suggested the involvement of hrp genes in the pathogenicity of SPC9018 on eggplant, and functional conservation of hrpF operons between SPC9018 and Pv9504. Both the hrpS mutant and the hrpL mutant were unable to cause necrotic lesions on eggplant leaves but retained their pathogenicity against lettuce. These results suggest that the pathogenicity of P. cichorii is hrp-dependent in eggplant, but not in lettuce

    The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 eV to 10^17 eV observed with the Tibet-III air-shower array

    Get PDF
    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in the period from 2000 November through 2004 October by the Tibet-III air-shower array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We performed extensive Monte Carlo calculations and discuss the model dependences involved in the final result assuming interaction models of QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD) and proton dominant (PD) ones. Pure proton and pure iron primary models are also examined as extreme cases. The detector simulation was also made to improve the accuracy of determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other as expected from the characteristics of the experiment at the high altitude, where the air showers of the primary energy around the knee reaches near maximum development and their features are dominated by electromagnetic components leading to the weak dependence on the interaction model or the primary mass. This is the highest-statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.Comment: 19 pages, 20 figures, accepted by Ap
    • …
    corecore