2,115 research outputs found

    Macroscopic Quantum Tunneling Effect of Z2 Topological Order

    Full text link
    In this paper, macroscopic quantum tunneling (MQT) effect of Z2 topological order in the Wen-Plaquette model is studied. This kind of MQT is characterized by quantum tunneling processes of different virtual quasi-particles moving around a torus. By a high-order degenerate perturbation approach, the effective pseudo-spin models of the degenerate ground states are obtained. From these models, we get the energy splitting of the ground states, of which the results are consistent with those from exact diagonalization methodComment: 25 pages, 14 figures, 4 table

    Spin-charge Separation in Nodal Antiferromagnetic Insulator

    Full text link
    In this paper, by using two dimensional (2D) Hubbard models with pi-flux phase and that on a hexagonal lattice as examples, we explore spin-charge-separated solitons in nodal antiferromagnetic (AF) insulator - an AF order with massive Dirac fermionic excitations (see detail in the paper). We calculate fermion zero modes and induced quantum numbers on solitons (half skyrmions) in the continuum limit, which are similar to that in the quasi one-dimensional conductor polyacetylene (CH)x and that in topological band insulator. In particular, we find some novel phenomena : thanks to an induced staggered spin moment, a mobile half skyrmion becomes a fermionic particle; when a hole or an electron is added, the half skyrmion turns into a bosonic particle with charge degree of freedom only. Our results imply that nontrivial induced quantum number on solitons may be a universal feature of spin-charge separation in different systems

    Capacitor Voltage Balancing in Full Binary Combination Schema Flying Capacitor Multilevel Inverters

    Get PDF
    Recently, the full binary combination schema (FBCS) method has been introduced to control the flying capacitor multilevel inverter. This method has the primary advantage that the number of voltage levels can be increased for a given number of semiconductor devices when compared to the conventional control methods. However, due to the difficulty of balancing the capacitors, the new schema requires fixed floating sources to provide the DC voltages. This paper reveals an approach of balancing the capacitors, thus expanding the application fields of FBCS inverters to the family of the flying capacitor multilevel inverters under the condition of choosing a suitable modulation index. Simulation results demonstrate the proposed voltage balancing control

    A Four-Level Crossing dc/dc Converter Based Drive System

    Get PDF
    This paper introduces a novel crossing front-end dc/dc converter for a four-level drive system which provides a voltage boost as well as dc capacitor bank voltage regulation. The primary advantage of the proposed converter is that it simplifies the control of the four-level diode-clamped inverter since capacitor voltage balancing is not required by the inverter control. Furthermore, the inverter modulation index can be varied up to its physical limitation. An average-value model of the converter is derived and used for insight and analysis of the converter operation. Detailed simulations of the four-level drive system demonstrate the effectiveness of the proposed system

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    Thermocapillary Convection in a Low Pr Material Under Simulated Reduced-Gravity Conditions

    Get PDF
    A liquid bridge of tin was held between two vertical coaxial iron rods 4.5 mm in diameter and 4.6 mm apart. The temperatures at the top and bottom of the liquid bridge were 325 and 240 degrees, respectively. Flow oscillation was detected by a thermocouple in the liquid bridge. The amplitude and frequency of oscillation were around 1.3 degrees C and 5 Hz, respectively

    Full Binary Combination Schema for Floating Voltage Source Multi-Level Inverters

    Get PDF
    This paper presents schema of operation for floating voltage source multi-level inverters. The primary advantage of the proposed schema is that the number of voltage levels (and thus power quality) can be increased for a given number of semiconductor devices when compared to the conventional flying capacitor topology. However, the new schema requires fixed floating sources instead of capacitors and therefore is more suitable for battery power applications such as electric vehicles, flexible AC transmission systems and submarine propulsion. Alternatively transformer/rectifier circuits may be used to supply the floating sources in a similar way to cascaded H-bridge inverters. Computer simulation results are presented for 4-, 8- and 16-level inverter topologies. A 4-level laboratory test verifies the proposed method

    Over-Distention Operation of Cascaded Multilevel Inverters

    Get PDF
    Established research has shown that cascaded multilevel inverters can provide more voltage vectors per number of active semiconductors compared to typical multilevel converters. This feature is significant for increasing the drive performance as well as reducing the drive complexity and losses. When two inverters are cascaded, the maximum number of effective levels (or maximal distention operation) is the product of the number of levels of the individual inverters. It is possible to operate the cascaded inverter beyond maximum distention. The over-distention operation is desirable since it effectively increases the number of voltage levels in spite of some missing switching levels. This paper studies over-distention operation based on an inverter system where two three-level inverters are cascaded, which can generate eleven equivalent converting levels instead of nine levels under maximal distention condition. An advanced modulation technique is introduced to handle both the missing line-to-ground voltage levels and the balance of DC link capacitor voltages in over-distention operation. Computer simulation and experimental validation are presented to verify the proposed methods
    • …
    corecore