66 research outputs found

    Correction of scan time dependence of standard uptake values in oncological PET

    Get PDF
    BACKGROUND: Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ (18)F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV. METHODS: Assuming irreversible FDG kinetics, SUR is linearly correlated to K(m) (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three ‘static scans’ at T=20,35,and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at (78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min later) were corrected accordingly and compared to the reference. RESULTS: For the dynamic data, the observed difference between uncorrected values and values at reference time was (-52±4.5)% at T=20 min and (-31±3.7)% at T=35 min for SUR and (-30±6.6)% at T=20 min and (-16±4)% at T=35 min for SUV. After correction, the difference was reduced to (-2.9±6.6)% at T=20 min and (-2.7±5)% at T=35 min for SUR and (1.9% ± 6.2)% at T=20 min and (1.7 ± 3.3)% at T=35 min for SUV. For the DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ± 11)% and (24 ± 8.4)%, respectively. After correction, these differences were reduced to (2.6 ± 6.9)% and (-2.4±7.3)%, respectively. CONCLUSION: If FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at different times post injection

    Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion

    Get PDF
    Objective: The process of arteriogenesis is driven by various growth factors including vascular endothelial growth factor (VEGF)-A, which mediates its activity through VEGFR-2 (Flk-1/KDR) on endothelial cells and through VEGFR-1 (Flt-1) on endothelial cells and monocytes. The purpose of this study was to identify which of the VEGF receptors are involved in arteriogenesis in vivo. Methods: Collateral vessel growth was induced by femoral artery ligation in a mouse model of hindlimb ischemia. Following ligation, Balb/c mice were treated with different growth factors (VEGF-A, VEGF-E, PlGF-2, VEGF-E plus PlGF-2 or VEGF-A plus PlGF-2, activating either VEGFR-1, VEGFR-2, or both). After 1 week of treatment, hindlimb perfusion was assessed by perfusion scintigraphy using Tc-99m-MIBI. Results: The strongest improvement of regional perfusion was achieved by simultaneous activation of VEGFR-1 and VEGFR-2, using either VEGF-A or VEGF-A plus PlGF-2, with elevation of relative perfusion in the ischemic limbs from 0.61 to 0.83. The partial restoration in perfusion was associated with morphological changes typical for arteriogenesis. Moreover, specific inhibition of both VEGF-receptors using ZK 202650 resulted in a significant inhibition of arteriogenesis, indicating an active role of the VEGF system in compensatory arteriogenesis. Conclusion: The coordinated activation of both VEGFR-1 and VEGFR-2 represents a more potent arteriogenic stimulus compared to the isolated activation of either one of these two receptors. These data imply that the activation of both monocytes and endothelial cells is necessary to obtain a maximal VEGF-induced activation of arteriogenesi

    A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

    Get PDF
    Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco- regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints

    Successful Combination of Olaparib and 225Ac-Dotatate in a Patient with Neuroendocrine Tumor G3 and BRCA Mutation

    Get PDF
    Based on the results of the NETTER-1 trial, peptide receptor radionuclide therapy with Lutetium-177 (177Lu) – DOTATATE is authorized for the treatment of neuroendocrine tumors (NET) grade 1 (G1) and grade 2 (G2) of the intestine. After the failure of 177Lu-DOTATATE therapy, targeted alpha-particle therapy (TAT) may be a possible treatment option. Here, we present a patient with cancer of unknown primary NET G2 later G3. The patient was referred to our hospital with urosepsis due to a second-degree urinary retention. After stent insertion, a contrast-enhanced computed tomography revealed a huge pelvic tumor without metastases. Initially, the patient had undergone surgical treatment. Later the patient developed liver metastasis and was treated by 177Lu-DOTATATE therapy and four lines of systemic therapy. A disease progression was observed and with the knowledge of a germline BRCA1 mutation, the patient was treated with TAT (Actinium-225 [225Ac]-DOTATATE) combined with olaparib. The patient achieved a significant treatment response for 12 months indicating that a combination therapy with an alpha emitter and olaparib demands further investigations in clinical trials

    Combined tumor plus nontumor interim FDG‐PET parameters are prognostic for response to chemoradiation in squamous cell esophageal cancer

    Get PDF
    We have investigated the prognostic value of two novel interim F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) parameters in patients undergoing chemoradiation (CRT) for esophageal squamous cell carcinoma (ESCC): one tumor parameter (maximal standardized uptake ratio rSUR) and one normal tissue parameter (change of FDG uptake within irradiated nontumor-affected esophagus increment SUVNTO). PET data of 134 European and Chinese patients were analyzed. Parameter establishment was based on 36 patients undergoing preoperative CRT plus surgery, validation was performed in 98 patients receiving definitive CRT. Patients received PET imaging prior and during fourth week of CRT. Clinical parameters, baseline PET parameters, and interim PET parameters (rSUR and increment SUVNTO) were analyzed and compared to event-free survival (EFS), overall survival (OS), loco-regional control (LRC) and freedom from distant metastases (FFDM). Combining rSUR and increment SUVNTO revealed a strong prognostic impact on EFS, OS, LRC and FFDM in patients undergoing preoperative CRT. In the definitive CRT cohort, univariate analysis with respect to EFS revealed several staging plus both previously established interim PET parameters as significant prognostic factors. Multivariate analyses revealed only rSUR and increment SUVNTO as independent prognostic factors (p = 0.003, p = 0.008). Combination of these parameters with the cutoff established in preoperative CRT revealed excellent discrimination of patients with a long or short EFS (73% vs. 17% at 2 years, respectively) and significantly discriminated all other endpoints (OS, p < 0.001; LRC, p < 0.001; FFDM, p = 0.02), even in subgroups. Combined use of interim FDG-PET derived parameters increment SUVNTO and rSUR seems to have predictive potential, allowing to select responders for definitive CRT and omission of surgery

    The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc

    Get PDF
    BACKGROUND: DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). METHODS: Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. RESULTS: Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. CONCLUSIONS: For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage

    Monitoring scanner calibration using the image-derived arterial blood SUV in whole-body FDG-PET

    No full text
    Abstract Background The current de facto standard for quantification of tumor metabolism in oncological whole-body PET is the standardized uptake value (SUV) approach. SUV determination requires accurate scanner calibration. Residual inaccuracies of the calibration lead to biased SUV values. Especially, this can adversely affect multicenter trials where it is difficult to ensure reliable cross-calibration across participating sites. The goal of the present work was the evaluation of a new method for monitoring scanner calibration utilizing the image-derived arterial blood SUV (BSUV) averaged over a sufficiently large number of whole-body FDG-PET investigations. Data of 681 patients from three sites which underwent routine 18F-FDG PET/CT or PET/MR were retrospectively analyzed. BSUV was determined in the descending aorta using a three-dimensional ROI concentric to the aorta’s centerline. The ROI was delineated in the CT or MRI images and transferred to the PET images. A minimum ROI volume of 5 mL and a concentric safety margin to the aortic wall was observed. Mean BSUV, standard deviation (SD), and standard error of the mean (SE) were computed for three groups of patients at each site, investigated 2 years apart, respectively, with group sizes between 53 and 100 patients. Differences of mean BSUV between the individual groups and sites were determined. Results SD (SE) of BSUV in the different groups ranged from 14.3 to 20.7% (1.7 to 2.8%). Differences of mean BSUV between intra-site groups were small (1.1–6.3%). Only one out of nine of these differences reached statistical significance. Inter-site differences were distinctly larger (12.6–25.1%) and highly significant (P<0.001). Conclusions Image-based determination of the group-averaged blood SUV in modestly large groups of whole-body FDG-PET investigations is a viable approach for ensuring consistent scanner calibration over time and across different sites. We propose this approach as a quality control and cross-calibration tool augmenting established phantom-based procedures
    corecore