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Abstract

Background: Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with
[18F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since
variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron
emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV.

Methods: Assuming irreversible FDG kinetics, SUR is linearly correlated to Km (the metabolic rate of FDG), where the
slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately
invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact
can be used to map SUR and SUV values from different investigations to a common time point for quantitative
comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which
further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver
metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three
‘static scans’ at T = 20, 35, and 55 min post injection (p.i.) were created, where the last scan defined the reference time
point to which the uptake values measured in the other two were corrected. The corrected uptake values were then
compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at
(78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min
later) were corrected accordingly and compared to the reference.

Results: For the dynamic data, the observed difference between uncorrected values and values at reference time
was (−52 ± 4.5)% at T = 20 min and (−31 ± 3.7)% at T = 35 min for SUR and (−30 ± 6.6)% at T = 20 min and
(−16 ± 4)% at T = 35 min for SUV. After correction, the difference was reduced to (−2.9 ± 6.6)% at T = 20 min and
(−2.7 ± 5)% at T = 35 min for SUR and (1.9% ± 6.2)% at T = 20 min and (1.7 ± 3.3)% at T = 35 min for SUV. For the
DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ± 11)% and (24 ± 8.4)%,
respectively. After correction, these differences were reduced to (2.6 ± 6.9)% and (−2.4 ± 7.3)%, respectively.

Conclusion: If FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is
possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at
different times post injection.
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Background
Currently, the standard uptake value (SUV, in units
of grams per milliliter), defined as the tracer concen-
tration at a certain time point normalized to injected
dose per unit body weight, is the only practical means
typically used for quantitative evaluation of clinical
[18F-]fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) investigations. However, the SUV approach
has several known shortcomings [1-3] which affect the
reliability of the SUV as a surrogate of the metabolic rate
of glucose consumption. Among these are

1. Susceptibility to errors in scanner calibration,
2. Insufficient correlation between systemic

distribution volume and body weight (leading to
variants of the SUV approach using lean body mass
(SUVlbm) [4] or body surface area (SUVbsa) [5] for
normalization), and, consequentially, residual
inter-study variability of the arterial input function
(AIF) despite SUV normalization [6].

3. Time dependence of the SUV.

We have addressed the first two points in a recent pub-
lication [7] and demonstrated that the standard tumor-to-
blood uptake ratio (SUR) is superior to SUV as a surrogate
parameter of Km (the metabolic rate of FDG). The reason
for this is that SUR can be shown to be linearly related to
Km if the AIF exhibits an essentially invariant shape across
different investigations. Scale changes of the AIF (different
blood SUVs) do not have any influence on SUR, whereas
lesion SUV is directly affected by the latter.
While tumor SUR thus is not affected by inter-study

variability of blood SUV, its use does not address another
source of potentially serious variability, namely, insuffi-
cient standardization of the uptake time prior to scan-
ning. Variability of the uptake period (i.e., variability of
scan start time relative to the time of injection) is a
persistent issue in clinical oncological PET [8,9]. This
represents a well-known problem for meaningful SUV
quantification since tumor SUV distinctly increases over
time [1,2,10,11]. Especially affected are follow-up studies,
where SUV changes of tumor lesions between consecu-
tive studies are the relevant quantity (e.g., in the context
of therapy response assessment), and scan time variability
can lead to serious misinterpretation of the data.
We are aware of two studies addressing the question

how to correct SUVs for variable scan time [10,11]. In
[10], a general SUV correction formula is proposed, but
the emphasis of this paper lies on considerations regarding
optimizing the imaging time, and the proposed semi-
empirical correction formula is not fully evaluated. It
contains, however, the important insight that the shape
of the AIF enters the correction. A second investigation
of the scan time variability effect and an empirical for-
mula how to correct for it has been reported in [11].

This investigation was restricted to breast cancer patients,
and the proposed correction formula resulted from purely
empirical observation of how SUV varied in these patients
over time without explicitly considering the influence of
the AIF shape. Here, the important observation was made
that the rate of SUV change over time is approximately
proportional to the magnitude of the SUV itself.
In the present work, we propose a generic method for

correction of scan time variability effects on SUR (and
SUV) which is based on observation and utilization of the
specific shape invariance of FDG input functions and the
consequences following from it when analyzing the Patlak
equation. Especially, this provides the ability to map all
measured values to a common reference scan time (e.g.,
60 min p.i.) as long as FDG kinetics can be considered
irreversible in the targeted tissue.
Starting from the Patlak equation, we first derive the

correction formulas for SUR and SUV, respectively. The
correction procedure is then evaluated in a group of nine
patients with liver metastases of colorectal cancer, for
which 15 dynamical investigations are available. These
data enable assessment of the full dynamic AIF as well as
comparison of the actually observed tumor SUV changes
over time with the correction factors derived for two time
frames selected from the dynamic data. Furthermore, we
apply the correction procedure to an independent group
of ten dual time point (DTP) whole body studies, where
the full AIF is not known. Here, the correction is used
to map SUR (and SUV) from the second to the first time
point to investigate whether the corrected SURs and SUVs
are concordant with those determined at the first time
point as should be the case if the correction works well.

Methods
Theory
According to the Patlak equation [12,13], the lesion SUR
at time t is given by

SUR(t) = ct(t)
ca(t)

= Km × �(t) + Vr, (1)

where ct(t) is the lesion’s tracer uptake until time t, and
ca(t) is the AIF at the same time point.� (the independent
(x-) coordinate of the Patlak plot) is determined by the AIF
according to

�(t) =
∫ t
0 ca(s)ds
ca(t)

= AUC(t)
ca(t)

, (2)

which dimensionally is a time (‘Patlak time’). Km is the
respective lesion’s metabolic trapping rate, and Vr is the
so-called apparent volume of distribution.
As has been discussed in [7], assuming a suitable

lesion and investigation independent value V̄r for Vr does
not introduce sizable errors since the second term in
Equation 1 is in general distinctly smaller than the first
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one, while its inter-lesion variability is rather small. It
was also shown in [7] that to a quite good approxima-
tion, the AIF is shape invariant (although differing in scale
even after SUV normalization) across investigations so
that�(t) no longer depends on the individual AIF but can
be considered as a given function of the scan time t alone.
This offers the possibility of correcting SURs (and SUVs)
for scan start time variations as follows.
We consider a reference scan time T0 which can be

taken to be equal to the intended ‘ideal’ mid-scan time,
e.g., 60 min p.i.. With a suitable chosen fixed value for
V̄r and the invariant (investigation and lesion indepen-
dent)�(t) relation, we can solve Equation 1 for the lesion’s
Km at both the actually given scan time t = T and the
reference time t = T0. Equating both expressions yields

SURT − V̄r
�T

= SUR0 − V̄r
�0

, (3)

where we use indices T and 0 to indicate measurements
referring to times T and T0, respectively. Solving this
equation for SUR0 yields

SUR0 = �0
�T

(SURT − V̄r) + V̄r, (4)

which determines the required scan time correction, pro-
vided the actual functional dependence of � on T is
known. As it turns out, for the available 15 dynamic inves-
tigations, �(T) is quite well approximated by a straight
line through the origin (i.e., proportional to T). This is
demonstrated in Figure 1B. Figure 1 further demonstrates
that inter-individual variability around the average AIF
appears small, although it has a non-negligible influence
on lesion SUV as discussed in [7].

In mathematical terms, the approximate proportional-
ity between T and � is equivalent to stating that starting
early after the peak of the curve (t > 1 min), the time
dependence of the AIF can be very well described by an
inverse power law of the form ca(t) = A×(t−d)−b, where
the position of the singularity of the hyperbola at t = d is
located near the peak position of the curve. While inclu-
sion of d as a free parameter generally improves quality of
the fit, somewhat, it turns out that it suffices, for the prob-
lem at hand, to consider the case d = 0 and use the model

ca(t) = A × t−b (t > 1min). (5)

Figure 2 shows the still quite satisfactory fit of thismodel
to the group averaged data from Figure 1A. Since empiri-
cally the condition b < 1 is always fulfilled, we can extend
the fitted hyperbola to t = 0 and integrate up to some time
point t = T which yields the area under the curve

AUC(T) = A
1 − b

× T1−b (6)

and consequently,

�(T) = AUC(T)

ca(T)
= T

1 − b
, (7)

which is a straight line through the origin with slope
m = (1 − b)−1. Equation 7 immediately explains the
observed approximate proportionality between � and T
and determines the factor of proportionality as being
equal to m. Taking Equation 7 into account, Equation 4
can be rewritten as

SUR0 = T0
T

(SURT − V̄r) + V̄r (8)
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Figure 1 Group averaged arterial input function (A) and ‘Patlak time’ (B) for the available 15 dynamic liver investigations. Error bars are
point-wise standard deviations of the individual curves from the respective mean (in the case of AIF, this amounts to (23 ± 3)% for t > 1 min).
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Figure 2 Least squares fit of hyperbola (Equation 5) to group-averaged AIF. The fit is shown in linear scale (left) as well as in double
logarithmic scale (right). The specified uncertainty of the time exponent b is the standard deviation of this parameter when fitting the model
separately to each of the 15 contributing AIFs which indicates the observed inter-individual variability. The data range indicated in red is used for
the fit. The blue line extrapolates the fitted hyperbola to early times. Despite the obvious deviation of the hyperbola from the data in this time range,
contribution to total AUC is small, and the residual difference negligible if AUC up to times t > 20 min is considered.

so that the deviation of SURT from SUR0 (the ‘error’ due
to deviation of actual scan time from the reference time)
is given by

SURT − SUR0 =
(
1 − T0

T

) (
SURT − V̄r

)
= �T

T
(
SURT − V̄r

)
.

(9)

It is notable that the AIF does not enter Equation 8
explicitly. According to this equation, the ratio
SUR0/SURT is furthermore roughly equal to the ratio
T0/T of the respective scan time points (and thus inde-
pendent of the value of SURT ) if V̄r � SURT . This might
be taken as a rule of thumb for estimating the magni-
tude of the scan time effect on SUR. The SUR correction
procedure is illustrated in Figure 3, where the effect of
a ±20-min deviation from the chosen reference time
T0 = 60 min is shown. Ultimately, the correction proce-
dure maps the measured SURT values from the respective
straight line SURT (Km) to the straight line SUR0(Km).
Recalling the relation between SUR and SUV (i.e.,

SUR(t) = SUV(t)/ca(t) if SUV units are used for express-
ing the tracer concentrations in tissue and blood, respec-
tively) and taking into account Equation 5, the procedure
can also be used to correct the scan time dependence of
the SUVs:

SUV0
SUVT

= SUR0
SURT

× ca(T0)

ca(T)
⇒

SUV0 = SUVT ×
[
SUR0
SURT

×
(
T0
T

)−b
]
,

(10)

where the SUR0/SURT ratio follows from Equation 8.
Contrary to the latter equation, Equation 10 exhibits
an explicit dependence on the time exponent b and
thus depends on the rate of decrease of the AIF.
Using the rough estimate SUR0/SURT ≈ T0/T given
above, one now obtains the rule-of-thumb estimate
SUV0/SUVT ≈ (T0/T)1−b for the scan time effect on SUV.

Study sample
Dynamic data
Nine male patients with liver metastases of colorectal
cancer were included retrospectively (age 48 to 76 years
(mean 62.8), weight 73 to 100 kg (mean 85.5)). For each
patient, one to three dynamic PET scans of 60-min dura-
tion were performed (altogether 15 scans). The scans
started immediately after injection of 346 to 430 MBq
FDG administrated as bolus over 10 to 20 s.
The scans were conducted with an ECAT EXACT HR+,

Siemens/CTI (Knoxville, TN, USA). The acquired data
were sorted into 23 to 31 frames with 10- to 20-s dura-
tion during bolus passage, 30- to 150-s duration until
10 min p.i., and 300-s duration afterwards. Tomographic
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Figure 3 Schematic explanation of how correction for scan time variability is performed. The example illustrates the effect of a ±20-min
deviation from the targeted scan time (T = 60 min). The straight lines define the Km vs. SUR relation presuming V̄r = 0.53 and the linear �(T)
relation according to Equation 7 with b = 0.313. The correction procedure yields the SUR values which would have been measured if all scans had
been performed at T = 60 min. Without correction, there is a spurious fractional deviation that is roughly equal to the corresponding deviation of
the actual from the targeted scan time (1/3 in this example).

images were reconstructed using attenuation weighted
OSEM reconstruction (6 iterations, 16 subsets, 6-mm
FWHMGaussian filter). The study protocol was approved
by the Technische Universität Dresden Clinical Institu-
tional Review Board and complies with the Declaration of
Helsinki.

Dual time point data
Ten patients with different tumor diseases (see Table 1)
for which routine dual time point measurements were
performed were included (seven males, three females,
age 37 to 80 years (mean 60.3), weight 48 to 102 kg
(mean 75.2)). For each patient, two whole-body scans
were performed with an Ingenuity TF (Philips Health-
care, Best, The Netherlands) time-of-flight PET/MR.
The first scan started (78.1 ± 15.9) min (range 58.2

Table 1 Tumor entities and number of lesions assessed in
the dual time point measurements

Type Number of lesions

Head and neck cancer 2

Rectal carcinoma (lung metastasis) 4

Rectal carcinoma (liver metastasis) 1

Colon carcinoma (liver metastasis) 1

Colon carcinoma (pelvic metastasis) 1

Non-Hodgkin lymphoma 9

Hodgkin lymphoma 1

Non-small cell lung cancer 2
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to 110.5 min) after injection of 222 to 306 MBq FDG
administrated as bolus over 10 to 20 s. The mean
time difference between the first and second scans was
39.2 min (range 24.3 to 55.8). Tomographic images
were reconstructed using the BLOB-OS-TF reconstruc-
tion (3 iterations, 32 subsets) and MR-based attenuation
correction.

Data evaluation
Dynamic data
The AIF was determined from a roughly cylindrical 3D
region of interest (ROI) centered in the aorta. To exclude
partial volume effects, a distance of at least 1 cm from
the aortic wall was maintained in all transaxial planes. To
compensate for the resulting small transaxial diameter, the
ROIs were extended axially (along the aorta) for about 10
cm. This resulted in sufficiently large ROI volumes and
ensured sufficiently high statistical accuracy of the derived
AIF values. It might be worth to stress that sufficiently
accurate determination of the tracer concentration in the
arterial blood is crucial in order to obtain reliable SUR val-
ues in general and scan-time correction in particular. We
consider 2D ROIs in single transaxial slices as insufficient
in this context.
Three ‘static’ images were generated from the data

acquired from 15 to 25 min (T = 20 min), 30 to 40 min
(T = 35 min), and 50 to 60 min (T = 55 min) p.i.. 3D
ROIs were defined in 22 lesions in the T = 55-min image
and were transferred to the T = 20- and T = 35-min
images. The ROIs had volumes from 2.74 to 389 ml (mean
77 ml). Blood concentrations were derived in the same
time ranges from the corresponding AIF. For each ROI,
the mean SUV and mean SUR were computed at all three
time points. The SUR and SUV values of the T = 20-
and T = 35-min images were then corrected to T = 55
min using Equations 8 and 10, respectively, and V̄r = 0.53
for the average apparent volume of distribution [7]. The
time exponent b appearing in Equation 10 was determined
from a fit of Equation 5 to the group-averaged AIF and set
to the value b = 0.313. Corrected and uncorrected val-
ues were compared with the corresponding values in the
T = 55-min image.

Dual time point data
In these investigations, the full dynamic AIF was not
accessible, but the blood tracer concentration required
for SUR computation at both time points could be deter-
mined as follows. For determination of the blood concen-
tration, first, a cylindrical 3D ROI was delineated in the
aorta in the MRI scan used for attenuation correction.
Here, too, a distance of at least 1 cm from the aortic wall
was maintained. The ROI was then transferred to the PET
scan, and the blood concentration was computed as the
mean value of the ROI. 3D ROIs were defined in 21 lesions
in the second DTP image and were transferred to the first
one. The ROIs had volumes from 1.26 to 125 ml (mean
24 ml). For each ROI, the mean SUV and mean SUR were
computed in both images. The SUR and SUV values of the
late scan were then corrected to the time of the early scan,
again using Equations 8 and 10, V̄r = 0.53 and b = 0.313.
Corrected and uncorrected values were compared with
the corresponding values in the early image.
For, both, dynamic and DTP data absolute and relative

differences between uncorrected and corrected SUR val-
ues and those measured at the reference time (SURref)
were computed. We use the symbols defined in Table 2,
where the reference time T = 55 min for the dynamic
data while for the DTP data it equals the time of the early
scan. Differences of SUV values were computed accord-
ingly. Average values are specified as mean ± standard
deviation.
ROI definition was performed using the ROVER soft-

ware (ABX, Radeberg, Germany [14,15]). Further data
analysis was carried out using the R software for statistical
computing [16].

Results
The time exponent b (required to utilize Equation 10 for
SUV correction) was set to the value of 0.313, resulting
from the hyperbola fit to the AIF data from the dynamic
liver metastases investigations (Figure 2). Figure 4 shows the
values of � SUR and δ SUR obtained for the dynamic liver
metastases data and the two chosen time points T = 20
min (A, B) and T = 35 min (C, D). As is to be expected,
at both time points, the uncorrected SURs differ quite

Table 2 Definition of some symbols (corresponding definitions used for SUV-related quantities)

Symbol Definition Comment

SURref SUR(T0) SUR measured at t = T0 (reference value)

SURT SUR(T)(uncorrected) SUR measured at t = T (without correction to t = T0)

SUR0 SUR(T)(corrected) SUR measured at t = T (after correction to t = T0)

� SURT SURT − SURref Absolute deviation of uncorrected SUR from reference value

δ SURT � SURT /SURref Fractional deviation of uncorrected SUR from reference value

� SUR0 SUR0 − SURref Absolute deviation of corrected SUR from reference value

δ SUR0 � SUR0/SURref Fractional deviation of corrected SUR from reference value
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Figure 4 Absolute and fractional differences of SURs in the dynamic data. Shown are the differences between uncorrected and corrected
SURs, respectively, and the SURs measured at T = 55 min. (A) Absolute difference at T = 20 min. (B) Fractional difference at T = 20 min.
(C) Absolute difference at T = 35 min. (D) Fractional difference at T = 35 min.

strongly from the values measured at the reference time
T = 55min: δ SURT = (−52 ± 4.5)% at T = 20 min and
δ SURT = (−31± 3.7)% at T = 35min. After correction,
the difference is reduced to δ SUR0 = (−2.9 ± 6.6)% at
T = 20 min and δ SUR0 = (−2.7 ± 5)% at T = 35 min.
Similar results were found for �SUV and δ SUV (Figure 5).
The SUV correction reduces the mean difference from
δ SUVT = (−30 ± 6.6)% to δ SUV0 = (1.9 ± 6.2)%
(T = 20 min) and from δ SUVT = (−16 ± 4)% to
δ SUV0 = (1.7 ± 3.3)% (T = 35 min), respectively.
The results for all liver lesions investigated in the dynamic
scans are detailed in Tables 3 and 4.
The corresponding results for the DTP data are pre-

sented in Figure 6 (SUR) and Figure 7 (SUV). Here, the
early time point served as the reference time relative to
which the second (late) time point data were corrected. In
this case, the correction clearly reduces the differences from
δ SURT = (48± 11)% to δ SUR0 = (2.6 ± 6.9)% and from
δ SUVT = (24 ± 8.4)% to δ SUV0 = (−2.4 ± 7.3)%.

The results for all lesions investigated in the DTP setup
are detailed in Table 5.

Discussion
Non-negligible variability of scan start relative to the time
of injection is a persistent issue in clinical oncological PET
[8,9]. In this work, we have developed and investigated a
straightforward method to compensate for the spurious
changes of SUR and SUV caused by this variability. We
want to clarify from the outset that the proposed correc-
tion procedure is not intended to obviate the necessity
for adequately standardized data acquisition as described,
for example, in [17]. Even though the presented scan time
correction turns out to work very well even for substan-
tial deviations from the targeted reference scan time, it
is of course preferable to minimize the influence of the
correction (with its inherent remaining uncertainties) by
adhering to a standardized time p.i. as closely as practi-
cally possible.
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Figure 5 Absolute and fractional differences of SUVs in the dynamic data. Shown are the differences between uncorrected and corrected
SUVs, respectively, and the SUVs measured at T = 55 min. (A) Absolute difference at T = 20 min. (B) Fractional difference at T = 20 min.
(C) Absolute difference at T = 35 min. (D) Fractional difference at T = 35 min.

The method was evaluated in two patient groups,
first, in 22 liver lesions (15 scans) measured dynam-
ically for 60 min and furthermore in 21 lesions (10
scans) assessed with DTP measurements. For each inves-
tigation, a reference time was selected from the avail-
able time frames (midpoint of the last time frame
(T = 55 min) for the dynamic studies and of the early
DTP time frame (78.1 ± 15.9 min), respectively). SUR
and SUV measured at the respective reference time
were used as the ‘gold standard’ against which the cor-
rected uptake values acquired at further time points were
compared.
The main finding of this work is that correction for

scan time variability (more precisely, correction for the
accompanying spurious SUR and SUV changes) is fea-
sible with surprisingly good accuracy and does only
require an image-based determination of the arterial
tracer concentration at the given scan time (rather than
knowledge of the full AIF): group averaged differences
between corrected and reference values typically only

amount to about (3 ± 7)% (or even less) and maxi-
mal deviations remain below ±15% in all cases. This is
to be compared with group averaged deviations of up
to about 50% (and maximal deviations of 65%) without
correction.
Especially, the obtained accuracy can be considered suf-

ficient to allow reliable comparison of lesion SURs and
SUVs in follow-up studies during therapy response assess-
ment, where typical inter-scan changes of 50% are consid-
ered as relevant (see e.g., [18] and references therein) even
if the scan time varies significantly between the successive
scans. Moreover, compensation for scan time variability
does offer the possibility to investigate whether smaller
SUV changes (currently masked by scan time variability
effects) could also provide relevant diagnostic informa-
tion.
Two reasons can be identified for the observed residual

differences � SUR0 = SUR0 − SURref between SUR mea-
sured at time T (and corrected to chosen reference time)
and the SUR actually measured at that reference time. The
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Table 3 Dynamic data at T = 20min

Lesion number SURT δSURT (%) δSUR0 (%) SUVT δSUVT (%) δSUV0 (%)

1 0.9 −41.3 −2.6 2.9 −14.3 3.5

2 1.0 −43.0 1.2 3.7 −14.6 10.6

3 1.1 −45.4 5.2 3.8 −24.6 6.0

4 1.1 −50.8 −6.1 3.7 −29.3 −1.6

5 1.2 −50.4 −1.9 4.2 −25.2 7.6

6 1.2 −50.2 −2.9 3.9 −31.2 −2.2

7 1.3 −56.9 −12.5 4.1 −31.9 0.9

8 1.2 −53.6 −6.8 4.4 −29.9 2.5

9 1.3 −52.3 −3.2 4.5 −28.0 6.5

10 1.2 −49.8 −1.6 4.4 −32.9 −4.1

11 1.4 −55.8 −7.4 4.5 −34.9 −0.6

12 1.5 −56.9 −7.5 4.1 −42.0 −9.3

13 1.4 −57.5 −11.1 4.4 −37.3 −4.5

14 1.6 −50.1 8.7 5.0 −29.6 11.8

15 1.5 −50.3 6.0 5.3 −28.0 11.9

16 1.6 −53.8 0.7 5.0 −34.8 3.5

17 1.6 −53.8 0.9 5.1 −34.8 3.7

18 1.3 −50.5 1.3 5.9 −30.2 4.1

19 1.3 −52.3 −2.7 5.8 −32.6 0.1

20 1.3 −47.8 7.2 7.1 −28.6 6.9

21 1.2 −56.4 −13.7 6.8 −35.5 −7.0

22 1.3 −57.7 −14.7 7.2 −37.4 −8.0

Mean ± SD 1.3 ± 0.2 −51.7 ± 4.5 −2.9 ± 6.6 4.8 ± 1.1 −30.3 ± 6.6 1.9 ± 6.2

Min/max 0.9/1.6 −57.7/ − 41.3 −14.7/8.7 2.9/7.2 −42.0/ − 14.3 −9.3/11.9

Absolute values of SUR and SUV and fractional deviations of SUR and SUV from values measured at T = 55min for all investigated lesions as well as mean values and
range.

first reason, obviously, are limitations of the correction
procedure and its underlying assumptions. The second
one is the fact that we use SURref as our de facto ‘gold stan-
dard’ since the real ground truth SUR at that time point
is not known. Therefore, the resulting � SUR0 is affected
by statistical and systematic errors of both measured SUR
values (SUR0 and SURref). In order to estimate the rela-
tive influence of both factors, we tentatively eliminated the
first one by using Equation 4 instead of Equation 8 for cor-
rection and re-evaluation of the dynamic data using the
individually correct Vr resulting from Patlak analysis and
the actual �T resulting from integration of the individu-
ally measured dynamic AIF up to time T . This procedure
reduces the correction to application of the individually
correct Patlak plot which thus would be ‘exact’ if the
individual dynamic data points were perfectly following
the Patlak equation. For T = 20 min, we find a reduc-
tion of the mean difference of SUR from (−2.9 ± 6.6)%
to (1.52 ± 3.8)%, i.e., the mean value and the standard
deviation of the difference are reduced by about 50%.
The still remaining deviations can be attributed to the

statistical and systematic errors of the two SUR measure-
ments contributing to the correction. Therefore, it might
be concluded that the accuracy of the presented scan
time correction method actually is roughly twice as high
than our results initially suggest: its inherent uncertainty
is comparable to the statistical accuracy of the measured
SUV and SUR values themselves.
The presented method rests on the empirical fact that

the AIF after FDG bolus injection exhibits an invariant
shape that, moreover, leads to an approximate propor-
tionality between Patlak time � and actual scan time T
(see Figure 1). This observation is mathematically equiv-
alent to stating that starting very early after injection,
the AIF can be described by a simple power law (see
Figure 2). This specific, investigation-independent �(T)

relation (Equation 7) ultimately leads to Equation 8. Thus,
SUR correction back to the actually intended (reference)
scan time only requires determination of the respective
SUR, i.e., of tissue SUV as well as AIF level at the given
scan time. It is then computable from the deviation of
the given from the intended start time alone (using an
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Table 4 Dynamic data at T = 35min

Lesion number SURT δSURT (%) δSUR0 (%) SUVT δSUVT (%) δSUV0 (%)

1 1.1 −25.8 −4.3 3.2 −5.3 6.0

2 1.2 −26.9 −3.2 4.0 −9.2 4.4

3 1.4 −30.6 −5.5 4.3 −15.5 −0.2

4 1.6 −28.1 −0.5 4.5 −14.8 2.3

5 1.8 −23.9 7.1 4.9 −12.6 6.7

6 1.6 −31.5 −5.4 4.7 −16.7 −0.1

7 1.9 −35.8 −9.2 5.0 −16.5 2.5

8 1.8 −34.6 −8.5 5.2 −16.5 1.5

9 1.9 −31.5 −3.6 5.5 −12.5 6.9

10 1.6 −33.8 −8.9 5.1 −22.1 −7.0

11 2.2 −30.9 −0.8 5.7 −16.7 3.8

12 2.4 −32.9 −3.2 5.5 −21.9 −2.1

13 2.2 −33.3 −4.4 5.7 −19.6 0.0

14 2.3 −30.2 0.4 6.0 −15.6 5.4

15 1.9 −37.5 −11.7 6.0 −18.5 −0.1

16 2.4 −31.2 −0.6 6.4 −16.8 4.4

17 2.3 −34.6 −5.7 6.2 −20.9 −1.0

18 1.9 −27.8 2.1 6.9 −17.8 1.0

19 1.9 −29.5 −0.3 6.9 −19.7 −1.4

20 2.0 −22.6 9.8 8.4 −15.8 3.7

21 1.9 −30.4 −1.6 8.6 −18.7 −0.2

22 2.1 −30.4 −0.8 9.3 −18.8 0.6

Mean ± SD 1.9 ± 0.4 −30.6 ± 3.7 −2.7 ± 5.0 5.8 ± 1.5 −16.5 ± 4.0 1.7 ± 3.3

Min/max 1.1/2.4 −37.5/ − 22.6 −11.7/9.8 3.2/9.3 −22.1/ − 5.3 −7.0/6.9

Absolute values of SUR and SUV and fractional deviations of SUR and SUV from values measured at T = 55min for all investigated lesions as well as mean values and
range.
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Figure 6 Differences between uncorrected and corrected late SURs, respectively, and early SURs in the DTP data. (A) Absolute difference.
(B) Fractional difference.
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Figure 7 Differences between uncorrected and corrected late SUVs, respectively, and early SUVs in the DTP data. (A) Absolute difference.
(B) Fractional difference.

Table 5 DTP data in the late scan

Lesion number �T (min) SURT δSURT (%) δSUR0 (%) SUVT δSUVT (%) δSUV0 (%)

1 51.7 4.6 36.4 −9.6 4.0 15.3 −11.3

2 51.9 3.0 28.0 −9.7 3.9 10.4 −10.5

3 43.5 4.2 40.4 −2.2 4.4 24.2 −1.2

4 24.3 4.2 56.7 8.3 5.3 35.2 7.2

5 24.5 5.3 44.3 −0.5 5.6 27.6 0.5

6 24.6 5.3 63.6 5.6 5.4 17.7 −11.1

7 24.6 4.9 42.4 −0.6 6.2 27.0 0.9

8 39.9 7.3 65.0 11.3 6.8 14.1 −11.9

9 40.0 11.4 51.3 3.5 8.8 25.1 −2.9

10 37.6 8.6 54.4 11.5 11.0 36.4 10.0

11 38.7 8.4 47.4 6.5 10.7 30.2 5.0

12 34.8 8.1 31.5 −10.1 10.3 17.2 −8.8

13 34.9 9.9 54.9 11.6 12.6 36.8 10.0

14 34.9 10.5 54.6 11.1 13.4 36.6 9.6

15 35.1 8.3 29.6 −3.8 11.3 10.8 −9.0

16 35.4 9.6 55.0 5.5 12.8 25.0 −3.2

17 49.7 10.0 55.1 3.9 13.3 25.1 −4.1

18 55.8 10.3 54.4 5.0 13.7 24.6 −3.7

19 43.1 9.8 33.1 −1.5 13.3 13.8 −6.9

20 43.3 11.1 56.1 5.3 14.7 25.9 −3.2

21 54.6 13.1 51.0 2.4 17.5 21.8 −6.1

Mean ± SD 39.2 ± 9.9 8.0 ± 2.9 47.9 ± 11.0 2.6 ± 6.9 9.8 ± 4.1 23.9 ± 8.4 −2.4 ± 7.3

Min/max 24.3/55.8 3.0/13.1 28.0/65.0 −10.1/11.6 3.9/17.5 10.4/36.8 −11.9/10.0

Absolute values of SUR and SUV and fractional deviations of SUR and SUV from values measured in the early scan for all investigated lesions as well as mean values
and range.
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estimate of the small parameter V̄r whose precise value
is not critical for the correction). An interesting obser-
vation in this context is the fact that the actual value of
the time exponent b in the power law used for describ-
ing the AIF does not explicitly enter the SUR correc-
tion (Equation 8) but only the SUV correction formula
(Equation 10). The required value of b was determined
by a least squares fit of Equation 5 to the available
group averaged dynamic AIF (see Figure 2) resulting in
b = 0.313. Using this value of b yielded a correction
of SUV with an accuracy comparable to that of the SUR
correction.
Strictly speaking, our dynamic liver scans only demon-

strate that the performed parametrization of the AIF
shape by an inverse power law and the stated value of the
parameter b holds up to about 60 min p.i.. Beyond that
time range, no direct proof for this specific (and invari-
ant) shape exists. However, the very good performance
of the correction procedure not only for the dynamic
liver metastases data measured up to T = 60 min but
also for the DTP measurements (where the second scan
occurred on average about 2 h p.i.) provides strong evi-
dence that Equation 7 can be extrapolated to distinctly
later times (with the same value for b) without caus-
ing notable errors in the correction procedure. Moreover,
the SUR correction (Equation 8) is not affected by the
actual value of b (and would be unaltered even in a con-
stant infusion scenario corresponding to b = 0), while
the SUV correction (Equation 10) is not critically sen-
sitive to modest variations of b. Good performance of
the correction in the DTP group furthermore shows that
the chosen value V̄r = 0.53 (also derived from the
dynamic AIF data of the liver metastases investigations)
is applicable for all tumor entities included in the DTP
investigations.
The chosen parametrization of the AIF by a power law

allows a concise formulation of the correction formu-
las. While this parametrization is not usually applied for
empirical modelling of AIF shapes (where sums of expo-
nentials are more common), it is not only justified by
our results but also consistent with the published data
of Thie et al. which modeled �(T) (Teq(t) in their nota-
tion) as a third-order polynomial (Equation (3) in [10]).
In the time range used by Thie et al. (up to 60 min p.i.),
the non-linearity is very small and their relation quite
well described by �(T) = 1.67 × T which deviates by
less than 15% from our result m = 1/(1 − b) = 1.46.
While the power law approach thus seems suggested by
the data and is attractive due to its dependence on only
two free parameters, we would like to emphasize that
a different AIF modelling would also be possible and
would yield comparable results regarding accuracy of the
correction, presuming the parametrization is adequately
fitting the measured AIF data. For example, Vriens and

coworkers used three exponentials to model a popula-
tion averaged AIF after bolus transition up to T = 45
min [19]. Fitting the power law in Equation 5 to their
parameterized AIF leads to b ≈ 0.34 which also is
consistent with our result b = 0.313 ± 0.030. More-
over, as already pointed out, adjusting the value of b only
affects (slightly) the SUV correction, but not the SUR
correction.
Notable differences are to be expected, however, if

different parameterizations of the AIF are extrapolated
beyond the time range used in the fitting procedure. Espe-
cially, an extrapolated exponential model (derived from
the limited early time range of dynamic measurements)
will rapidly decrease to negligible concentration levels at
later times which is not in accord with reality.
On the other hand, our extrapolation of the power law

to the much later times used in the DTP measurements
could be proven to yield very satisfactory results regard-
ing SUR/SUV correction. Therefore, our assumption is
that a power law with b ≈ 0.3 remains valid for AIF
modelling also at late times. The good performance of
the correction procedure for the DTP data (acquired with
a different scanner at much later times and also recon-
structed differently) provides strong evidence for this
conjecture. Despite these promising results, further inves-
tigations are desirable to further support the assumed
power law behavior of the AIF at later times.
Ultimately, the proposed SUR (and SUV) correction

rests on the ability to derive the lesion’s Km from its mea-
sured SUR according to Equation 3. As already stated in
[7] this is not necessarily always correct, e.g., if inflam-
mation is involved, this assumption no longer hold since
the Patlak assumption of irreversible trapping is violated
in this case. For that reason, we did not recommend a
general conversion from SUR to Km in [7]. One example
might be the finding in [11] that a fraction of breast can-
cer lesions exhibited untypical time dependence of lesion
SUV (very low and either essentially time independent
or even slightly decreasing). While such behavior (includ-
ing slightly decreasing SUV over time) still is compatible
with irreversible kinetics if Km is sufficiently small (due
to the then dominant contribution of the reversible FDG
pool to the PET signal which follows the decrease of the
AIF), it also might be caused by actual deviations from
irreversible kinetics. From a practical point of view, as far
as lesions with a very low SUV are concerned (as was
the case in [11]), such deviations from irreversible trans-
port have no real impact on the scan time correction for
the simple reason that the absolute magnitude of the cor-
rection is small if the SUV itself is small, so, even if the
correction would be erroneous in this situation, it would
simply represent a small (erroneous) correction of a small
SUV with no further practical consequences. We reiter-
ate, however, that the correction procedure rests on the
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assumption of irreversible tracer kinetics and might lead
to erroneous conclusions if this assumption is violated. On
the other hand, the assumption has turned out to be valid
for all tumor lesions we have investigated so far (notably
the quite heterogeneous group of tumor entities present
in our DTP data).
Altogether, scan time correction of SUR thus seems

feasible whenever the tracer kinetics can be adequately
described by a Patlak equation. Scan time correction of
SUV is then possible as well, but somewhat more depen-
dent on the applied AIF parametrization (explicit depen-
dence on b). We believe it also would be worthwhile to
investigate whether the procedure could be extended to
other mostly irreversibly binding PET tracers (i.e., tracers
for which influence of a possibly non-zero k4 rate con-
stant in the standard reversible two-compartment model
is negligible in the considered time range) if SUV-based
approaches are applied since they would be affected by
scan time variability in a comparable way.
Finally, it is important to point out the fact that the time

dependency of SUR is distinctly larger than that of SUV
which makes scan time correction even more important
for the former. The increased time dependence is easily
explained by observing that SUR is defined as the ratio of
(increasing) SUV and (decreasing) arterial blood concen-
tration. For our data, the difference between SUR at the
actual scan time T and SUR at the reference time was up
to δ SURT ≈ 60%. The SUV difference was lower, up to
δ SUVT ≈ 40%, but still far from negligible. Moreover, the
scan time correction of SUV does of course not reduce
the independent substantial influence of inter-study vari-
ability in blood concentration on the resulting SUV [7].
This distinct disadvantage of SUV relative to SUR per-
sists, and we believe that a transition from SUV-based
(usually corrected neither for scan time nor for arterial
blood concentration variability) to SUR-based evaluation
(including correction for scan time variability as proposed
in the present work) could offer distinct advantages for
quantitative oncological FDG PET.

Conclusion
If FDG kinetics is irreversible in the targeted tissue, cor-
rection of standard uptake values and tumor-to-blood
uptake ratios for scan time variability is possible with good
accuracy. The correction distinctly improves comparabil-
ity of lesion uptake valuesmeasured at different times post
injection.
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