25 research outputs found
Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool
Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively
Vitamin D Status Among Children With Juvenile Idiopathic Arthritis: A Multicenter Prospective, Non-randomized, Comparative Study
BackgroundJuvenile idiopathic arthritis (JIA) is a chronic autoimmune disease characterized by destructive and inflammatory damage to the joints. The aim in this study was to compare vitamin D levels between children and adolescents, 1–18 years of age, with juvenile idiopathic arthritis (JIA) and a health control group of peers. We considered effects of endogenous, exogenous, and genetic factors on measured differences in vitamin D levels among children with JIA.MethodsOur findings are based on a study sample of 150 patients with various variants of JIA and 277 healthy children. The blood level of vitamin D was assessed by calcidiol level. The following factors were included in our analysis: age and sex; level of insolation in three regions of country (center, south, north); assessment of dietary intake of vitamin D; effect of prophylactic doses of cholecalciferol; a relationship between the TaqI, FokI, and BsmI polymorphisms of the VDR gene and serum 25(OH)D concentration.ResultsWe identified a high frequency of low vitamin D among children with JIA, prevalence of 66%, with the medial level of vitamin D being within the range of “insufficient” vitamin D. We also show that the dietary intake of vitamin D by children with JIA is well below expected norms, and that prophylactic doses of vitamin D supplementation (cholecalciferol) at a dose of 500–1,000 IU/day and 1,500–2,000 IU/day do not meet the vitamin D needs of children with JIA. Of importance, we show that vitamin D levels among children with JIA are not affected by clinical therapies to manage the disease nor by the present of VDR genetic variants.ConclusionProphylactic administration of cholecalciferol and season of year play a determining role in the development of vitamin D deficiency and insufficiency
Dairying, diseases and the evolution of lactase persistence in Europe
Update notice Author Correction: Dairying, diseases and the evolution of lactase persistence in Europe (Nature, (2022), 608, 7922, (336-345), 10.1038/s41586-022-05010-7) Nature, Volume 609, Issue 7927, Pages E9, 15 September 2022In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years(1). Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions(2,3). Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectoriesthan uniform selection since the Neolithic period. In the UK Biobank(4,5) cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.Peer reviewe
Degradation of organic light-emitting diodes based on different-ligand complexes of terbium (III) salicylate and 2-phenoxybenzoate
International audienceDegradation (D) of organic light-emitting diodes (OLEDs) based on new different-ligand complexes of terbium salicylate (Tb(Sal)3(TPPO)2) and 2-phenoxybenzoate (Tb(pobz)3(TPPO)2) with triphenyl phosphinoxide (TPPO) was studied. Initial reversible D is associated with charge carrier trap filling. A temperature increase, applied stress relief, and short-term irradiation with UV light lead to trapped charge carrier release and electroluminescence (EL) intensity recovery. During strong heating, irreversible D is observed after the recovery; this D requires in addition an electric field (EF). Intense UV light causes D without EF. The use of ac bias voltage eliminates reversible D, and sealing retards irreversible long-term D
Collagen structure deterioration in the skin of patients with pelvic organ prolapse determined by atomic force microscopy
We used atomic force microscopy (AFM) to diagnose pathological changes in the extracellular matrix (ECM) of skin connective tissue in patients with pelvic organ prolapse (POP). POP is a common condition affecting women that considerably decreases the patients' quality of life. Deviations from normal morphology of the skin ECM from patients with POP occur including packing and arrangement of individual collagen fibers and arrangement of collagen fibrils. The nanoindentation study revealed significant deterioration of the mechanical properties of collagen fibril bundles in the skin of POP patients as compared with the skin of healthy subjects. Changes in the skin ECM appeared to correlate well with changes in the ECM of the pelvic ligament tissue associated with POP. AFM data on the ECM structure of normal and pathologically altered connective tissue were in agreement with results of the standard histological study on the same clinical specimens. Thus, AFM and related techniques may serve as independent or complementary diagnostic tools for tracking POP-related pathological changes of connective tissue.10 page(s
Immunotherapy for malignant pleural mesothelioma. Current status and future prospects.
Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleura that is frequently resistant to conventional therapies. Immunotherapy is a promising investigational approach for MPM that has shown some evidence of clinical benefit in select patients. However, tumor-induced immunosuppression is likely a major impediment to achieving optimal clinical responses to immunotherapeutic intervention. MPM contains a variable degree of infiltrating T-regulatory cells and M2 macrophages, which are believed to facilitate tumor evasion from the host immune system. Additional immunosuppressive factors identified in other human tumor types, such as tumor-associated programmed death ligand-1 expression, may be relevant for investigation in MPM. Conventional cytoreductive therapies, such as radiation, chemotherapy, and surgery, may play a critical role in successful immunotherapeutic strategies by ablating intratumoral and/or systemic immunosuppressive factors, thus creating a host environment more amenable to immunotherapy. This article reviews the immunotherapeutic approaches being evaluated in patients with MPM and discusses how immunotherapy might be rationally combined with conventional tumor cytoreductive therapies for this disease
Recommended from our members
Immunotherapy for malignant pleural mesothelioma. Current status and future prospects.
Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleura that is frequently resistant to conventional therapies. Immunotherapy is a promising investigational approach for MPM that has shown some evidence of clinical benefit in select patients. However, tumor-induced immunosuppression is likely a major impediment to achieving optimal clinical responses to immunotherapeutic intervention. MPM contains a variable degree of infiltrating T-regulatory cells and M2 macrophages, which are believed to facilitate tumor evasion from the host immune system. Additional immunosuppressive factors identified in other human tumor types, such as tumor-associated programmed death ligand-1 expression, may be relevant for investigation in MPM. Conventional cytoreductive therapies, such as radiation, chemotherapy, and surgery, may play a critical role in successful immunotherapeutic strategies by ablating intratumoral and/or systemic immunosuppressive factors, thus creating a host environment more amenable to immunotherapy. This article reviews the immunotherapeutic approaches being evaluated in patients with MPM and discusses how immunotherapy might be rationally combined with conventional tumor cytoreductive therapies for this disease
TRANSLATIONAL REVIEW Immunotherapy for Malignant Pleural Mesothelioma Current Status and Future Prospects
Abstract Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleura that is frequently resistant to conventional therapies. Immunotherapy is a promising investigational approach for MPM that has shown some evidence of clinical benefit in select patients. However, tumor-induced immunosuppression is likely a major impediment to achieving optimal clinical responses to immunotherapeutic intervention. MPM contains a variable degree of infiltrating T-regulatory cells and M2 macrophages, which are believed to facilitate tumor evasion from the host immune system. Additional immunosuppressive factors identified in other human tumor types, such as tumor-associated programmed death ligand-1 expression, may be relevant for investigation in MPM. Conventional cytoreductive therapies, such as radiation, chemotherapy, and surgery, may play a critical role in successful immunotherapeutic strategies by ablating intratumoral and/or systemic immunosuppressive factors, thus creating a host environment more amenable to immunotherapy. This article reviews the immunotherapeutic approaches being evaluated in patients with MPM and discusses how immunotherapy might be rationally combined with conventional tumor cytoreductive therapies for this disease