16 research outputs found

    Polynomiography for the Polynomial Infinity Norm via Kalantari's Formula and Nonstandard Iterations

    Get PDF
    In this paper, an iteration process, referred to in short as MMP, will be considered. This iteration is related to finding the maximum modulus of a complex polynomial over a unit disc on the complex plane creating intriguing images. Kalantari calls these images polynomiographs independently from whether they are generated by the root finding or maximum modulus finding process applied to any polynomial. We show that the images can be easily modified using different MMP methods (pseudo-Newton, MMP-Householder, methods from the MMP-Basic, MMP-Parametric Basic or MMP-Euler-Schroder Families of Iterations) with various kinds of non-standard iterations. Such images are interesting from three points of views: scientific, educational and artistic. We present the results of experiments showing automatically generated non-trivial images obtained for different modifications of root finding MMP-methods. The colouring by iteration reveals the dynamic behaviour of the used root finding process and its speed of convergence. The results of the present paper extend Kalantari's recent results in finding the maximum modulus of a complex polynomial based on Newton's process with the Picard iteration to other MMP-processes with various non-standard iterations

    Biomorphs via Modified Iterations

    Get PDF
    The aim of this paper is to present some modifications of the biomorphs generation algorithm introduced by Pickover in 1986. A biomorph stands for biological morphologies. It is obtained by a modified Julia set generation algorithm. The biomorph algorithm can be used in the creation of diverse and complicated forms resembling invertebrate organisms. In this paper the modifications of the biomorph algorithm in two directions are proposed. The first one uses different types of iterations (Picard, Mann, Ishikawa). The second one uses a sequence of parameters instead of one fixed parameter used in the original biomorph algorithm. Biomorphs generated by the modified algorithm are essentially different in comparison to those obtained by the standard biomorph algorithm, i.e., the algorithm with Picard iteration and one fixed constant

    Visual Analysis of the Newton's Method with Fractional Order Derivatives

    Get PDF
    The aim of this paper is to investigate experimentally and to present visually the dynamics of the processes in which in the standard Newton's root finding method the classic derivative is replaced by the fractional Riemann-Liouville or Caputo derivatives. These processes applied to polynomials on the complex plane produce images showing basins of attractions for polynomial zeros or images representing the number of iterations required to obtain polynomial roots. These latter images were called by Kalantari as polynomiographs. We use both: the colouring by roots to present basins of attractions, and the colouring by iterations that reveal the speed of convergence and dynamic properties of processes visualised by polynomiographs

    Automatic Generation of Aesthetic Patterns with the Use of Dynamical Systems

    Get PDF
    The aim of this paper is to present some modifications of the orbits generation algorithm of dynamical systems. The well-known Picard iteration is replaced by the more general one - Krasnosielskij iteration. Instead of one dynamical system, a set of them may be used. The orbits produced during the iteration process can be modified with the help of a probabilistic factor. By the use of aesthetic orbits generation of dynamical systems one can obtain unrepeatable collections of nicely looking patterns. Their geometry can be enriched by the use of the three colouring methods. The results of the paper can inspire graphic designers who may be interested in subtle aesthetic patterns created automatically

    Polynomiography via Ishikawa and Mann Iterations

    Get PDF
    The aim of this paper is to present some modifications of complex polynomial roots finding visualization process. In this paper Ishikawa or Mann iterations are used instead of the standard Picard iteration. Kalantari introduced the name polynomiography for that visualization process and the obtained images he called polynomiographs. Polynomiographs are interesting both from educational and artistic point of view. By the use of different iterations we obtain quite new polynomiographs that look aestheatically pleasing comparing to the ones from standard Picard iteration. As examples we present some polynomiographs for complex polynomial equation z^3 - 1 = 0, permutation and doubly stochastic matrices. We believe that the results of this paper can inspire those who may be interested in aesthetic patterns created automatically. They also can be used to increase functionality of the existing polynomiography software

    Newton’s method with fractional derivatives and various iteration processes via visual analysis

    Get PDF
    The aim of this paper is to visually investigate the dynamics and stability of the process in which the classic derivative is replaced by the fractional Riemann–Liouville or Caputo derivatives in the standard Newton root-finding method. Additionally, instead of the standard Picard iteration, the Mann, Khan, Ishikawa and S iterations are used. This process when applied to polynomials on complex plane produces images showing basins of attractions for polynomial zeros or images representing the number of iterations required to achieve any polynomial root. The images are called polynomiographs. In this paper, we use the colouring according to the number of iterations which reveals the speed of convergence and dynamic properties of processes visualised by polynomiographs.Moreover, to investigate the stability of the methods, we use basins of attraction

    Polynomiography Based on the Non-standard Newton-like Root Finding Methods

    Get PDF
    In this paper a survey of some modifications based on the classic Newton's and the higher order Newton-like root finding methods for complex polynomials are presented. Instead of the standard Picard's iteration several different iteration processes, described in the literature, that we call as non-standard ones, are used. Kalantari's visualizations of root finding process are interesting from at least three points of view: scientific, educational, and artistic. By combining different kinds of iterations, different convergence tests, and different colouring we obtain a great variety of polynomiographs. We also check experimentally that using complex parameters instead of real ones in multi-parameter iterations do not destabilize the iteration process. Moreover, we obtain nicely looking polynomiographs that are interesting from the artistic point of view. Real parts of the parameters alter symmetry, whereas imaginary ones cause asymmetric twisting of polynomiographs

    On the robust Newton’s method with the Mann iteration and the artistic patterns from its dynamics

    Get PDF
    There are two main aims of this paper. The first one is to show some improvement of the Robust Newton's Method (RNM) introduced recently by Kalantari. The RNM is a generalisation of the well-known Newton's root finding method. Since the base method is undefined at critical points, the RNM allows working also at such points. In this paper, we improve the RNM method by applying the Mann iteration instead of the standard Picard iteration. This leads to an essential decrease in the number of root finding steps without visible destroying the sharp boundaries among the basins of attractions presented in polynomiographs. Furthermore, we investigate visually the dynamics of the RNM with the Mann iteration together with the basins of attraction for varying Mann's iteration parameter with the help of polynomiographs for several polynomials. The second aim of this paper is to present the intriguing polynomiographs obtained from the dynamics of the RNM with the Mann iteration under various sequences used in this iteration. The obtained polynomiographs differ considerably from the ones obtained with the RNM and are interesting from the artistic perspective. Moreover, they can easily find applications in wallpaper or fabric design

    Acceleration of the Robust Newton Method by the use of the S-iteration

    Get PDF
    In this paper, we propose an improvement of the Robust Newton's Method (RNM). The RNM is a generalisation of the known Newton's root finding method restricted to polynomials. Unfortunately, the RNM is slow. Thus, in this paper, we propose the acceleration of this method by replacing the standard Picard iteration in the RNM by the S-iteration. This leads to an essential acceleration of the modified method. We present the advantages of the proposed algorithm over the RNM using polynomiagraphs and some numerical measures. Moreover, we present its possible application to the generation of artistic patterns
    corecore