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Kalantari’s Formula and Nonstandard Iterations
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aInstitute of Computer Science, University of Silesia, Bȩdzińska 39, 41–200 Sosnowiec,
Poland

Abstract

In this paper, an iteration process, referred to in short as MMP, will be consid-
ered. This iteration is related to finding the maximum modulus of a complex
polynomial over a unit disc on the complex plane creating intriguing images.
Kalantari calls these images polynomiographs independently from whether they
are generated by the root finding or maximum modulus finding process applied
to any polynomial. We show that the images can be easily modified using dif-
ferent MMP methods (pseudo-Newton, MMP-Householder, methods from the
MMP-Basic, MMP-Parametric Basic or MMP-Euler-Schröder Families of Itera-
tions) with various kinds of non-standard iterations. Such images are interesting
from three points of views: scientific, educational and artistic. We present the
results of experiments showing automatically generated non-trivial images ob-
tained for different modifications of root finding MMP-methods. The colouring
by iteration reveals the dynamic behaviour of the used root finding process and
its speed of convergence. The results of the present paper extend Kalantari’s
recent results in finding the maximum modulus of a complex polynomial based
on Newton’s process with the Picard iteration to other MMP-processes with
various non-standard iterations.

Keywords: fractals, polynomiography, iterations, root finding, maximum
modulus

1. Introduction

Kalantari defined polynomiography as the art and science of visualisation in
approximation of the zeros of complex polynomials via fractal and non-fractal
images created using the mathematical convergence properties of iteration func-
tions [1, 2]. The well-known Newton method, as well as methods from the Basic
Family and Euler-Schröder Family of Iterations will be used as iteration func-
tions. The polynomiograph is a single two-dimensional image that presents the
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visualisation process of root finding for a given polynomial. Polynomiography,
as a method of producing interesting graphics that could be widely used, was
patented by Kalantari in the USA in 2005 [1].

In [3, 4], the authors presented a survey of some modifications of Kalantari’s
polynomiography based on the classic Newton’s and the higher order Newton-
like root finding methods for complex polynomials. Instead of the standard
Picard’s iteration, several different iteration processes were used. By combining
different kinds of iterations, different convergence tests and different colouring
methods they obtained a great variety of polynomiographs [4].

Recently, Kalantari presented the Maximum Modulus Principle (MMP) for
complex polynomials and related it to the pseudo-Newton method together with
some illustrative examples of polynomiographs [5]. The pseudo-Newton method
produces intriguing images different from those obtained via the classic Newton’s
root finding process. In this paper, following [5], we explore further modifica-
tions of the algorithms for polynomiograph rendering obtained with the help
of various iterations and root finding methods in their pseudo versions, which
we call MMP methods. In comparison to [3, 4], we extend the list of iterations
adding new iterations that have been presented in the literature recently. The
actual list of iterations contains 18 items. Dependencies between iterations have
been investigated and are presented on the diagram in Fig. 1.

The paper is organised as follows. Section 2 presents the Maximum Modulus
Principle for polynomials and its connection with the pseudo-Newton method.
Section 3 gives the definitions of the 18 types of iterations used in the fixed
point theory and known from the literature. The following section, Section 4,
describes selected root finding methods for a specific pseudo-polynomial. Sec-
tion 5 is devoted to some modifications of the methods presented in Section 4.
These modifications can be easily obtained using one of the non-standard iter-
ations, instead of the Picard iteration. Section 6 describes the polynomiograph
generation algorithm and Section 7 shows examples of polynomiographs. Fi-
nally, Section 8 concludes the paper and shows future directions on this subject.

2. Maximum Modulus Principle for Polynomials

Denote by p any non-constant complex polynomial on domain D = {z ∈ C :
|z| ≤ 1}. Next, state the following Maximum Modulus Problem: find a local
maximum of |p(z)| on D. It is known that, in this case, the Maximum Modulus
Principle is satisfied [6] and states that

‖p‖∞ = max{|p(z)| : z ∈ D} (1)

is attained at a boundary point of D. Further, a point z∗ ∈ D is a local
maximum of |p(z)| over D if and only if [5]

z∗ =

(
p(z∗)

p′(z∗)

)/(∣∣∣∣ p(z∗)p′(z∗)

∣∣∣∣). (2)
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Formula (2) can be used to test if a given z is a local maximum of |p(z)| on
D. From (2) it follows that if z∗ is a local maximum of |p(z)| over D, then z∗ is
a fixed point of

F (z) =

(
p(z)

p′(z)

)/(∣∣∣∣ p(z)p′(z)

∣∣∣∣). (3)

The fixed point of F can be found by the following iteration procedure:

zn+1 = F (zn), n = 0, 1, 2, . . . , (4)

where z0 ∈ C is a given starting point.
Rather than solving F (z) = z, one can solve the following pseudo-polynomial

equation [5]:
G(z) = p(z)|p′(z)| − zp′(z)|p(z)| = 0. (5)

It is seen that G(z∗) = 0 if and only if either z∗ is a fixed point of F , i.e. a
local maximum of |p(z)| over D, or z∗ is a zero of p(z)p′(z). This means that
in general the number of zeros of G(z) = 0 is larger than the number of fixed
points of F .

To solve (5), Kalantari proposed a method which he called the pseudo-
Newton method [5]. This method takes the following form:

zn+1 = zn −
Gn(zn)

G′n(zn)
, n = 0, 1, 2, . . . , (6)

where z0 ∈ C is a given starting point and

Gn(z) = p(z)|p′(zn)| − zp′(z)|p(zn)|. (7)

Observe that functions Gn and their derivatives G′n with respect to z are chang-
ing from iteration to iteration and contain absolute value factors depending on
zn, which makes them constant values with respect to the z variable.

Introducing

Nn(z) = z − Gn(z)

G′n(z)
(8)

we can express (6) in the following short form:

zn+1 = Nn(zn), n = 0, 1, 2, . . . , (9)

where z0 ∈ C is a given starting point. This form uses the well-known Picard
iteration.

3. Iterations

In fixed point theory there exist many theorems and methods that allow one
to find fixed points of a given mapping. One of the techniques in the theory is
an iterative approximation of the fixed points. We could use various kinds of
iteration processes. Let us recall some of them.

Let T : X → X be a mapping on a metric space (X, d), where d is a metric.
Further, let x0 ∈ X be a starting point.
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• Picard iteration (1890) [7]:

xn+1 = T (xn), n = 0, 1, 2, . . . , (10)

• Mann iteration (1953) [8]:

xn+1 = (1− αn)xn + αnT (xn), n = 0, 1, 2, . . . , (11)

where αn ∈ (0, 1] for all n ∈ N.

• Ishikawa iteration (1974) [9]:{
xn+1 = (1− αn)xn + αnT (yn),

yn = (1− βn)xn + βnT (xn), n = 0, 1, 2, . . . ,
(12)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

• Noor iteration (2000) [10]:
xn+1 = (1− αn)xn + αnT (yn),

yn = (1− βn)xn + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(13)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

• Suantai iteration (2005) [11]:
xn+1 = (1− αn − βn)xn + αnT (yn) + βnT (zn),

yn = (1− an − bn)xn + anT (zn) + bnT (xn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(14)

where αn, βn, γn, an, bn ∈ [0, 1], αn + βn ∈ [0, 1], an + bn ∈ [0, 1] for all
n ∈ N and

∑∞
n=0(αn + βn) =∞.

• S-iteration (2007) [12]:{
xn+1 = (1− αn)T (xn) + αnT (yn),

yn = (1− βn)xn + βnT (xn), n = 0, 1, 2, . . . ,
(15)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

• SP iteration (2011) [13]:
xn+1 = (1− αn)yn + αnT (yn),

yn = (1− βn)zn + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(16)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.
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• CR iteration (2012) [14]:
xn+1 = (1− αn)yn + αnT (yn),

yn = (1− βn)T (xn) + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(17)

where αn, βn, γn ∈ [0, 1] for all n ∈ N and
∑∞
n=0 αn =∞.

• Khan iteration (2013) [15]:{
xn+1 = T (yn),

yn = (1− αn)xn + αnT (xn), n = 0, 1, 2, . . . ,
(18)

where αn ∈ (0, 1] for all n ∈ N.

• Karakaya iteration (2013) [16]:
xn+1 = (1− αn − βn)yn + αnT (yn) + βnT (zn),

yn = (1− an − bn)zn + anT (zn) + bnT (xn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(19)

where αn, βn, γn, an, bn ∈ [0, 1], αn + βn ∈ [0, 1], an + bn ∈ [0, 1] for all
n ∈ N and

∑∞
n=0(αn + βn) =∞.

• S∗-iteration (2013) [17]:
xn+1 = (1− αn)T (xn) + αnT (yn),

yn = (1− βn)T (xn) + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(20)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

• Picard-S iteration (2014) [18]:
xn+1 = T (yn),

yn = (1− αn)T (xn) + αnT (zn),

zn = (1− βn)xn + βnT (xn), n = 0, 1, 2, . . . ,

(21)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

• Thakur iteration (2014) [19]:
xn+1 = (1− αn)T (xn) + αnT (yn),

yn = (1− βn)zn + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(22)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.
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• Abbas iteration (2014) [20]:
xn+1 = (1− αn)T (yn) + αnT (zn),

yn = (1− βn)T (xn) + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(23)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

• Karakaya iteration (2015) [21]:{
xn+1 = T ((1− αn)yn + αnT (yn)),

yn = T ((1− βn)xn + βnT (xn)), n = 0, 1, 2, . . . ,
(24)

where αn ∈ (0, 1], βn ∈ [0, 1] for all n ∈ N.

• P-iteration (2015) [22]:
xn+1 = (1− αn)T (zn) + αnT (yn),

yn = (1− βn)zn + βnT (zn),

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . . ,

(25)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

• Sintunavarat iteration (2016) [23]:
xn+1 = (1− αn)T (yn) + αnT (zn),

yn = (1− βn)xn + βnzn,

zn = (1− γn)xn + γnT (xn), n = 0, 1, 2, . . .

(26)

where αn ∈ (0, 1] and βn, γn ∈ [0, 1] for all n ∈ N.

• Thakur iteration (2016) [24]:
xn+1 = T (yn),

yn = T ((1− αn)xn + αnzn),

zn = (1− βn)xn + βnT (xn), n = 0, 1, 2, . . . ,

(27)

where αn ∈ (0, 1], βn ∈ [0, 1] for all n ∈ N.

The presented iterations for particular values of the parameters can be re-
duced to other iterations. For instance, it is easily seen that the Ishikawa itera-
tion with βn = 0 for all n ∈ N is a Mann iteration, and when βn = 0, αn = 1 for
all n ∈ N is the Picard iteration. The dependencies between all the mentioned
iterations are shown in Fig. 1.

In the rest of the paper we will work in the Banach space X = C with the
standard norm. We take z0 ∈ C and αn = α, βn = β, γn = γ, an = a, bn = b for
all n ∈ N, such that α ∈ (0, 1], β, γ, a, b ∈ [0, 1], α+ β ∈ (0, 1] and a+ b ∈ [0, 1].
Naturally, if α+ β ∈ (0, 1], then

∑∞
n=0(αn + βn) =

∑∞
n=0(α+ β) =∞.
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4. Root Finding Methods for Gn

In the literature, many root finding methods are known, e.g. the Traub-
Ostrowski method [25], the Householder method [26], the Harmonic Mean New-
ton’s method [27], and higher order methods from the Basic Family or Euler-
Schröder’s Family of Iterations [2], to mention but a few. Every such method can
be easily adopted for finding roots of Gn. To adopt any root finding method we
only need to use formally functions Gn and their derivatives in formulas defining
any particular method. This approach is justified because any k–th derivative
of Gn is well-defined, as is shown in the following theorem.

Theorem 1. Let Gn be given by (7). Then, for a fixed n function Gn is C∞

and for every k ≥ 1

G(k)
n (z) = p(k)(z)(|p′(zn)| − k|p(zn)|)− zp(k+1)(z)|p(zn)|. (28)

Proof. For a fixed n, the values |p′(zn)|, |p(zn)| are constant. Therefore, the
terms p(z)|p′(zn)|, zp′(z)|p(zn)| are polynomials of argument z. Then, Gn, as
the difference of polynomials, is also a polynomial and so it is in C∞.

Now, we prove (28) by induction. For k = 1 we have

G′n(z) = p′(z)|p′(zn)| − |p(zn)|(p′(z) + zp′′(z))

= p′(z)(|p′(zn)| − |p(zn)|)− zp′′(z)|p(zn)|.

Assume that the statement is true for some k ≥ 1, i.e.

G(k)
n (z) = p(k)(z)(|p′(zn)| − k|p(zn)|)− zp(k+1)(z)|p(zn)|. (29)

For k + 1, we have G
(k+1)
n (z) = (G

(k)
n (z))′. From the inductive hypothesis

(29) we get

G(k+1)
n (z) = (p(k)(z)(|p′(zn)| − k|p(zn)|)− zp(k+1)(z)|p(zn)|)′

= p(k+1)(z)(|p′(zn)| − k|p(zn)|)− |p(zn)|(p(k+1)(z) + zp(k+2)(z))

= p(k+1)(z)(|p′(zn)| − (k + 1)|p(zn)|)− zp(k+2)(z)|p(zn)|

Therefore, (28) follows by induction for all k ≥ 1.

Next, we present some selected formulas for root finding of Gn, which we
will call MMP-methods. We start with the MMP-Householder method:

zn+1 = Nn(zn)− Gn(zn)2G′′n(zn)

2G′n(zn)3
, n = 0, 1, 2, . . . , (30)

where Nn is the pseudo-Newton method given by (8).
For the Basic Family of Iterations presented by Kalantari in [2], we can

introduce its MMP version in the following way. Let p be a complex polynomial
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with deg p ≥ 2 and Gn functions associated with p. For any n we define a
sequence of functions Dm,n : C→ C as follows: D0,n(z) = 1 and for m > 0 let

Dm,n(z) = det



G′n(z)
G′′n(z)

2! . . .
G(m−1)

n (z)
(m−1)!

G(m)
n (z)
m!

Gn(z) G′n(z)
. . .

. . . G(m−1)
n (z)
(m−1)!

0 Gn(z)
. . .

. . .
...

...
...

. . .
. . . G′′n(z)

2!
0 0 . . . Gn(z) G′n(z)


. (31)

The elements of the MMP-Basic Family of Iterations are then defined as:

Bm,n(z) = z −Gn(z)
Dm−2,n(z)

Dm−1,n(z)
, m = 2, 3, . . . . (32)

Let us see how the first three elements of the MMP-Basic Family look like:

B2,n(z) = z − Gn(z)

G′n(z)
, (33)

B3,n(z) = z − 2G′n(z)Gn(z)

2G′n(z)2 −G′′n(z)Gn(z)
, (34)

B4,n(z) = z − 6G′n(z)2Gn(z)− 3G′′n(z)Gn(z)2

G′′′n (z)Gn(z)2 + 6G′n(z)3 − 6G′′n(z)G′n(z)Gn(z)
. (35)

One can easily see that B2,n is the pseudo-Newton’s method, whereas B3,n is
the MMP-Halley’s method.

By using functions Dm,n following [2], one can define the MMP-Parametric
Basic Family of Iterations:

Bm,n,λ(z) = z − λGn(z)
Dm−2,n(z)

Dm−1,n(z)
, (36)

where m = 2, 3, . . . and λ ∈ C. Let us note that for λ = 1 the MMP-Parametric
Basic Family of Iterations reduces to the MMP-Basic Family of Iterations.

In [2], we can find another family of iterations, namely the Euler-Schröder
Family. The initial elements of the MMP version of this family have the following
form:

E2,n(z) = z − Gn(z)

G′n(z)
, (37)

E3,n(z) = E2,n(z) +

(
Gn(z)

G′n(z)

)2
G′′n(z)

2G′n(z)
, (38)

E4,n(z) = E3,n(z)−
(
Gn(z)

G′n(z)

)3(
G′′′n (z)

6G′n(z)
− G′′n(z)

2G′n(z)2

)
, (39)

E5,n(z) = E4,n(z) +

(
Gn(z)

G′n(z)

)4(
GIVn (z)

4!G′n(z)
− 5G′′n(z)G′′′n (z)

12G′n(z)2
+

5G′′n(z)3

8G′n(z)3

)
.

(40)
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One can easily see that E2,n is the pseudo-Newton’s method. The construction
of the other elements of the family can be made following [2].

5. Modifications of Root-Finding Methods for Gn

In [4], the authors have presented some modifications of the polynomio-
graph’s generation process. Following the ideas from the article we can intro-
duce similar modifications to the MMP versions of the root finding methods.
Let us denote by Rn any root finding method in its MMP version, e.g. those
from Section 4. Now, let us replace the standard Picard iteration in the MMP
versions of the root finding methods by one of the non-standard iterations de-
scribed in Section 3, in which Rn plays the role of T . Moreover, following [4],
we can replace the real parameters of those iterations with the complex ones.

Because the modifications are straightforward, we present only examples for
selected iterations (<(z) denotes the real part of z):

• P-iteration: 
zn+1 = (1− α)Rn(wn) + αRn(vn),

vn = (1− β)wn + βRn(wn),

wn = (1− γ)zn + γRn(zn), n = 0, 1, 2, . . . ,

(41)

where α, β, γ ∈ C and <(α) ∈ (0, 1], <(β),<(γ) ∈ [0, 1],

• CR iteration:
zn+1 = (1− α)vn + αRn(vn),

vn = (1− β)Rn(zn) + βRn(wn),

wn = (1− γ)zn + γRn(zn), n = 0, 1, 2, . . . ,

(42)

where α, β, γ ∈ C and <(α),<(β),<(γ) ∈ [0, 1],

• Karakaya iteration (2015):{
zn+1 = Rn((1− α)vn + αRn(vn)),

vn = Rn((1− β)zn + βRn(zn)), n = 0, 1, 2, . . . ,
(43)

where α, β ∈ C and <(α) ∈ (0, 1], <(β) ∈ [0, 1].

6. Polynomiograph Generation

The generation algorithm of polynomiograph for MMP-methods is very sim-
ilar to the algorithm used for the standard root-finding methods [4]. First, we
take a polynomial p ∈ C[Z]. Then, for each starting point z0 in the area A ⊂ C
we choose the iteration process from Section 3 and a root-finding method in
its MMP version, as described in Section 5. The iteration proceeds till the
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convergence criterion (test) is satisfied or the maximum number of iterations is
reached. The standard convergence test has the following form:

|zn+1 − zn| < ε, (44)

where ε > 0. In [28], we can find other convergence tests that are based on
metric and non-metric conditions, e.g.

|0.01(zi+1 − zi)|+ |0.029|zi+1|2 − 0.03|zi|2| < ε, (45)

|0.04<(zi+1 − zi)| < ε ∨ |0.05=(zi+1 − zi)| < ε, (46)

|0.4<(zi+1 − zi)|2 < ε ∧ |=(zi+1 − zi)|2 < ε. (47)

When the iteration process ends, i.e. the maximum number K of iterations
is reached or the convergence test is satisfied, we assign a colour to the starting
point z0 based on the number of performed iterations and a chosen colour map.

The pseudocode of the algorithm is presented in Algorithm 1. In the algo-
rithm, the selected iteration process from Section 3 is denoted as Iq. The index
q is a vector of parameters of the iteration method, i.e. q ∈ CN , where N is the
number of parameters of the iteration. The convergence test is denoted as Tt,
where t ∈ RM is a vector of parameters of the test. Moreover, the colour map
is represented as a table of C colours.

Algorithm 1: Polynomiograph generation

Input: p ∈ C[Z] – polynomial, A ⊂ C – area, K – the maximum number
of iterations, Iq – iteration method, q ∈ CN – parameters of the
iteration Iq, Rn – root-finding method in its pseudo version, Tt –
convergence test, t ∈ RM – parameters of the convergence test Tt,
colourmap[0..C − 1] – colour map with C colours.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 n = 0
3 while n < K do
4 zn+1 = Iq(Rn, p, zn)
5 if Tt(zn, zn+1) = true then
6 break

7 n = n+ 1

8 i = b(C − 1) nK c
9 colour z0 with colourmap[i]

7. Examples of Polynomiographs

In this section, some examples of the polynomiographs obtained by using the
methods described in the previous sections are presented. In the first example
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we present the use of different iterations in Kalantari’s pseudo-Newton method.
The common parameters used in the example were the following: p(z) = z3−1,
A = [−3, 3]2, K = 40, convergence test (44) with ε = 0.001, and the iterations’
parameters were as follows:

• Mann iteration: α = 0.4 + 0.1i,

• Ishikawa iteration: α = 0.7, β = 0.6,

• Noor iteration: α = 0.7 + 0.4i, β = 0.77 + 0.26i, γ = 0.19 + 0.21i,

• Suantai iteration: α = 0.2, β = 0.2, γ = 1.0, a = 0.1, b = 0.1,

• S iteration: α = 0.95− 0.5i, β = 0.5 + 0.5i,

• SP iteration: α = 0.7, β = 0.85, γ = 0.5,

• CR iteration: α = 0.9, β = 0.9, γ = 0.9,

• Khan iteration: α = 0.3,

• Karakaya iteration (2013): α = 0.2, β = 0.2, γ = 0.05, a = 0.1, b = 0.1,

• S∗ iteration: α = 0.5 + i, β = 0.5 + i, γ = 0.3 + i,

• Picard-S iteration: α = 0.5− 0.7i, β = 0.5− 0.7i,

• Thakur iteration (2014): α = 0.7, β = 0.35, γ = 0.9,

• Abbas iteration: α = 0.05 + 0.9i, β = 0.95, γ = 0.05,

• Karakaya iteration (2015): α = 0.95− i, β = 0.05− i,

• P iteration: α = 0.5, β = 0.9, γ = 0.05,

• Sintunavarat iteration: α = 0.94, β = 0.25, γ = 0.75,

• Thakur iteration (2016): α = 0.9, β = 0.7.

Figs. 2, 3 present the obtained polynomiographs. From the images, we see
that changing the iteration method alters the shape of the pattern compared to
the pattern obtained for the standard Picard iteration. Moreover, we can ob-
serve that the use of complex parameters adds swirls and twists to the obtained
patterns. This makes the images look more dynamic and vivid.

In the example with the pseudo-Newton method, for each iteration we used
only one set of parameters’ values. In our study, we tried other values for the
parameters and found the images in general to be non-trivial and attractive. As
an example, in Fig. 4 we present polynomiographs for the Mann iteration with
different values of the parameter α: (a) 0.2 + 0.1i, (b) 0.4 + 0.1i, (c) 0.6 + 0.1i,
(d) 0.8 + 0.1i. It is seen that the images in Fig. 4 change ”smoothly” with a
”small” change of parameter α. We observed similar effects for the other types
of iteration processes.
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(a) Picard (b) Mann (c) Ishikawa

(d) Noor (e) Suantai (f) S

(g) SP (h) CR (i) Khan

Figure 2: Examples of polynomiographs for the pseudo-Newton method and various iterations.

13



(a) Karakaya (2013) (b) S∗ (c) Picard-S

(d) Thakur (2014) (e) Abbas (f) Karakaya (2015)

(g) P (h) Sintunavarat (i) Thakur (2016)

Figure 3: Examples of polynomiographs for the pseudo-Newton method and various iterations
(cont.).
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(a) α = 0.2 + 0.1i (b) α = 0.4 + 0.1i

(c) α = 0.6 + 0.1i (d) α = 0.8 + 0.1i

Figure 4: Examples of polynomiographs for various values of the α parameter in the Mann
iteration used for the pseudo-Newton method

In the second example, we present the use of different MMP-methods for Gn.
The common parameters used to generate the images in this example were the
following: p(z) = z4 + z2 − 1, A = [−2.5, 2.5]2, K = 50, convergence test (44)
with ε = 0.001. The maxima of |p(z)| are attained for 0.707107 + 0.707107i,
−0.707107+0.707107i, −0.707107−0.707107i, 0.707107−0.707107i. In Figs. 5–7
the points with the maxima are marked with a red asterisk. Fig. 5 shows images
obtained using the CR iteration with α = 0.1, β = 0.1, γ = 0.85 and following
MMP-methods: (a) pseudo-Newton, (b) MMP-Householder, (c) MMP-Halley,
(d) MMP-E3. Images obtained using the same MMP-methods but with the use
of the Noor iteration with α = 0.7, β = 0.5, γ = 0.5 are presented in Fig. 6.
Finally, in Fig. 7 we see images obtained with the Thakur iteration (2016) with
α = 0.5, β = 0.5. Comparing images in each figure we can observe that the
use of different MMP-methods has a great impact on the shape of the pattern.
Moreover, we see further examples of using different iteration methods with a
fixed MMP-method (compare corresponding images in each of the figures).

Furthermore, polynomiographs from Figs. 5–7 present the dynamic behaviour
of various MMP-processes. Colours and their gradients show how many itera-
tions are needed to find max |p(x)| and the speed of convergence for a partic-
ular MMP-process starting from a given point on the polynomiograph respec-
tively. The number of iterations uniformly increases along the vertical colour
bar palette (the bottom and top corresponds to 0 and 50 iterations respectively).
Looking at the colours and shapes of the polynomiographs one can see that the
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(a) pseudo-Newton (b) MMP-Householder

(c) MMP-Halley (d) MMP-E3

Figure 5: Examples of polynomiographs for various MMP-methods and the CR iteration.

(a) pseudo-Newton (b) MMP-Householder

(c) MMP-Halley (d) MPP-E3

Figure 6: Examples of polynomiographs for various MMP-methods and the Noor iteration.
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(a) pseudo-Newton (b) MMP-Householder

(c) MMP-Halley (d) MMP-E3

Figure 7: Examples of polynomiographs for various MMP-methods and the Thakur iteration
(2016).

use of different iteration processes and MMP-methods changes the speed of con-
vergence of the root-finding process for Gn – for some points the convergence is
faster and for others it is slower. The speed depends on the MMP-method, the
iteration and the values of the parameters used.

The last example, presented in Fig. 8, shows various patterns obtained using
the proposed methods and modifications. The parameters used to generate
these images were as follows:

(a) p(z) = z4 +z2−1, A = [−2.5, 2.5]2, K = 50, Thakur iteration (2016) with
α = 0.5, β = 0.5, pseudo-Newton method, convergence test (46) with
ε = 0.001,

(b) p(z) = z5+z, A = [−2.5, 2.5]2, K = 20, Picard iteration, MMP-Householder
method, convergence test (44) with ε = 0.001,

(c) p(z) = z15 + 1, A = [−2.5, 2.5]2, K = 100, Ishikawa iteration with α =
0.65− 0.35i, β = 0.5− 0.35i, MMP-Halley method, convergence test (44)
with ε = 0.001,

(d) p(z) = z8−z4−2, A = [−2.5, 2.5]2, K = 100, Khan iteration with α = 0.5,
MMP-E3 method, convergence test (47) with ε = 0.001,

(e) p(z) = z5 + z − 5, A = [−2.5, 2.5]2, K = 50, Mann iteration with α =
0.95− i, MMP-Householder method, convergence test (44) with ε = 0.001,

(f) p(z) = (4 + 4i)z4 + 8iz2 + 4, A = [−2.5, 2.5]2, K = 30, CR iteration with
α = 0.35, β = 0.1, γ = 0.85, MMP-Halley method, convergence test (44)
with ε = 0.001.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Examples of polynomiographs for various parameters.

From the images, we see that using different combinations of the parameters,
e.g. MMP-methods, iteration processes etc., we are able to obtain very diverse
and interesting fractal patterns that have potential artistic applications.

8. Conclusions and Future Work

Polynomiographs are good examples of the connection between mathemat-
ics and art. They also reveal hidden information on the character and speed
of convergence to polynomials’ or pseudo-polynomials’ roots. In this paper, we
presented some modifications of Kalantari’s results on the visualisation of the
root-finding process for the pseudo-polynomial G. We showed that the Maxi-
mum Modulus Principle for complex polynomials is enriched by different types
of iterations, MMP-methods, convergence tests and different colour maps that
can serve as a good source of impressive and intriguing images. Apart from be-
ing artistically valuable, the images reveal information about convergence and
its speed for traditional root-finding iterations, as well as MMP-iterations that
converge to a maximum of the polynomial’s modulus.

It is known that the shape of polynomiographs can be easily modified in
a predictable way by changing the roots of polynomial p. It is interesting to
question whether the same would occur for polynomiographs obtained with the
MMP-methods. The performed experiments show that the answer concerning
the ”continuity” of images with respect to ”small” changes of the roots of p is
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affirmative. Moreover, the results of the paper can be further extended by using
the multipoint methods [29, 30].

Recently, in [31], a study on the use of various switching processes in poly-
nomiography was presented. We can investigate similar switching processes and
introduce new ones with the MMP-methods. Another interesting direction of
future studies could rely on replacing complex numbers by more general ones,
e.g. dual and double numbers as used in [32] for defining the q-system fractals.
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