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Abstract 

We derive necessary and sufficient conditions of optimality for a sys-
uv>xix vx.v^ov.xxn./v>vx ujr c*xx v̂  v VJMVAUXV^XX v^qu.ctuxv/xx \JX X CUiUWDIVJ u j p c wxoxx ctxx xxxxxxxxtc 

number of variables. The time of control is assumed to be fixed. Con­
straints on controls and states are imposed. The performance index is 
more general than quadratic one and has an integral form. To obtain op­
timality conditions we use the well-known Dubovitskii-Milyutin method. 

Key words: Petrowsky type equation, infinite number of variables, 
optimal control, Dubovitskii-Milyutin method. 
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1 Introduction 

In [4], [5], [6] optimal control problems for systems described by operators with 
aii infinite number of variables have been considered. That operators are similar 
to the stationary Schrodinger operator. The interests in the study of that class 
of operators is stimulated by problems in quantum field theory [2], [4]. In [4], 
[5], [6] to obtain optimality conditions arguments of [12] have been applied. 

In our paper making use of the Dubovitskii-Milyutin method [3], [7], [13] 
similarly as in [9], [10] we derive necessary and sufficient conditions of optimality 
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for a system described by Petrowsky type equation with an infinite number 
of variables. That problem with quadratic performance index and contraints 
imposed only on controls has been earlier considered by Gali and El-Saify in [6]. 

2 Some functional spaces ([4], [5], [6], [9]) 

Let {Pk{t))kLi b e a fixed sequence of weights such that 0 < Pk{t) E C°°{R1), 
JRl Pk{t)dt = 1. With respect to this sequence on R°° = R1 x R1 x . . . with the 
boundary F (F is meant as the boundary of the support of the measure dg{x) 
defined below) it can be introduced the measure dg{x) in the following way 

dg{x) = (Pi(*i)d*i) ® {P2{x2)dx2) ® . . . , {R°° 3 x = (ar*)*Li, xk G R1)-

The examples of the construction of the measure dg{x) are given in [1]. On R°° 
one can construct the space L2{R°°) := L2{R°°, dg{x)) with the norm 

l / 2 - , A , r . 

<4~oo. 

<R« 

The space L2{R°°) is a Hilbert one with the scalar product 

M.La(.H~) := I / \u\2dg{x) 

{utv)L2(-oo)= / u{x)v{x)dg{x). 

For functions which are / = 1,2, . . . times continuosly differentiable up to the 
boundary T of R°° and which vanish on T it can beintroduced the scalar product 

{u,v)W{Roo)= ^{Dau/Qav)iik2{Roo) 

where Da is defined by ; ;, , . ,-

Understanding the different at ion in the distributional sense, after the standard 
procedure of completion one can obtain Sobolev spaces Hl{R°°) (/ = 1,2,.. .). 
The space H°{R°°) is equivalent to L2{R°°). 

To the spaces Hl{R°°) (/ = 1, 2, . . . ) one can construct their duals ffU|(1?°°). 
The duality between the spaces Hl{R°°) and H'^R00) is induced by the scalar 
product of the space L2{R°°). ., 

Next one can define the following space J .„ '.*.'< 

H^(I?00):={t/:t/G^(i?00)) P " ^ = 0 o n T , |c[ < Z - 1, / > 1} 

and its dual H^l{R°°). 
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For spaces mentioned above we have the following chains 

Hl(R°°) C L2(IV
3O) = H0(R0O)t-H'l(R00) 

Hl
0(R°°) C L2(R

i0)CHol(ieo) 

and 

IMIiIJ(R~) > IM.La(.R~> > \\UWH~1(R<")' 

B2(0, T; H0(R°°)) denotes the space of measurable functions (0, T) -» Hl
0(R°°) 

t »-> /(<£), where T < -foo, such that 

T 1/2 

ll/IIL2(o,T; #<(R~» := ( J \\f(t)\\2HilR~)dt ) < +°o-

The space L2(0,T; H^R00)) is a Hilbert one with the scalar product 

T 

(/>.?)L2(0,T;tf<(fl<~)) = / ( / (*)^(<))J5TJ(H«»)*-

0 

Analogously it can be defined the spaces 

4 ( 0 , T ; L2(R
OG)) and L2(0,'T; H0

l(K°°)). 

For them we have the chain 

L2(0,T; Ho(tf°°)) C L2(0,T; L2(Ir°)) C L2(0,T; H0
l(R<*>)). 

3 Pe t rowsky type equat ion wi th an infinite 
number of variables 

For the operator A(t) in the form [6] 

(A(t)*)(*) = £ £ ( - l ) H - ^ ^ | L _ (VftOM»*(*)) + ff(*,*)*(*) 
|«|<U=i y/Pk(xk,t)°xk x y 

where q(x,t) for all £ £ (0, T) is a real-valued function in x that is bounded and 
measurable on _R°°, such tfrat q(x,t) > c > 0, c a constant, the bilinear form 
7r(£;$,#) := (.4(<)$,*)L2(R«>) is coercive on Hl

0(R°°). 

The operator A(t) is a bounded self-adjoint elliptic operator of 2Z"1 order 
with an infinite number of variables mapping Hl

0(R°°) onto H0
l(R°°). 
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Now let us consider the following evolution equation of Petrowsky type 

A(t)y + ^ = f . e r , *e(o,T) (3.1) 

y(x,0) =yi(x) x€R°° (3.2) 

^(x,0) = y2(x) xeR°° (3.3) 

y(x,t) = o xer, te(o,T) (3.4) 

where / € L 2(0,T; H0
l(R°°)), Vl G Hl

0(R°°), y2 G L2(R°°). 
Denote by Q = R°° x (0,T) and L2(Q) := L2(0,T; L2(R°°)). From [6] and 

the results of [12] we know that there is a unique solution 

(y,^) € L2(0,T; Hl
Q(R°°)) x L2(Q) 

to the equations (3.1)-(3.4) and the mapping (/, j / i ,y2) •"->• (2/. §f) " 

M O . T ^ ' t i r 0 ) ) x /f'(/i°°) x L2(i?°°)) -> L2(0,T; /^(fl00)) x L2(Q) 

is (norm,norm)-continuous. Moreover, the operator A(t) + J J J [6] is a linear 

bounded operator which maps L2(0,T; Hl
Q(R°°)) onto L2(0,T; HQ1(R°°)). 

4 Statement of optimal control problem 
Optimality conditions 

We consider the following optimization problem 

д2v 
A(t)y + Ђţ = u xЄR°°, t€(0,T) (4.1) 

y(x,0) =yi(x) xЄR°° (4.2) 

•^(x,0) = y2(x) xЄR°° (4.3) 

y(x,t) = 0 x€T, ťЄ(0,T) (4.4) 

Let us denote by Y = L 2 (0,T; H0(R°°)) x L2(Q) the space of states and by 
U = L2(Q) the space of controls. 

The control time T is assumed to be fixed. 
The performance functional is given by 

I{y>y)~ I F(x,t)y1 u)dg(x)dt ~> min (4.5) 

M
 Q 

where F : H°° x [0,T] x fl1 x r t 1 r-> i? 1 satisfies the following conditions: 



Optimal Control of a, System Governed by Petrowsky Type Equation . . . 77 

Al) F(x,t,y,u) is continuous with respect to (x,t,y,u), 

A2) there exist Fy(x,t,y,u),Fu(x,t,y, u) which are continuous with respect to 
(x,t,y,u), 

A3) F(x,t, y, u) is strictly convex with respect to the pair (y, u) i.e. 

F(x,t,Xy1 + (l-X)y2,Xul + (l-X)u2)<XF(x,t,yl,u1) + (l-X)F(x,t,y2,u2), 

Vyi,y2,ui,u2£R1, (yi,ui)^ (y2,u2), AG (0,1). 

We assume the following contraints on controls: 

"" € Uad is a closed, convex subset of the space L2(Q) (4.6) 

and on states: 

y £ Uad is a closed, convex subset of L2(0, T; Hl
Q(R°°)) , , 

with non-empty interior. ^ " ' 

Also we assume the following condition: there exists (y, u) such that y £ 
intYaa-, u G Uad and (y, u) satisfies the equation (4.1)-(4.4) (the so-called Slater's 
condition). 

The necessary and sufficient optimality conditions to the problem (4.1)-(4.7) 
are formulated in the following theorem: 

T h e o r e m 1 Under the assumptions mentioned above, there is a unique solution 
(y°,u°) to the problem (4.1)~(4.7). Moreover, there is the adjoint state p, 

(n ?Z\ (z r.J.O T- frl(R°°\\ v T,AC)\ 
V fii I "~ ~ - 1 \ ~ ' """ ' — u v - v / / '" ^ - \ " v y ) 

which satisfies (in the weak sense) the adjoint equation given below and the 
necessary and sufficient conditions of optimality are characterized by the fol­
lowing system of partial differential equations and inequalities: 
state equation 

ß2V° 

Л(t)y° + Џ- = u° xЄR°°, tЄ(0,T) (4.8) 

y°(x,0) = Уl(x) xЄR°° (4.9) 

дv° 
- | - M ) = »-(-0 

xeR°° (4.10) 

y°(x,t) = 0 xeľ, te(0,T) (4.11) 

adjoint equation 

ЛЏ)P+Џ = FУ xЄR°°, te(0,T) (4.12) 

p(x,T) = 0 xЄR°° (4.13) 

f(*,г, = o xЄR°° (4.14) 

p(x,t) = 0 xЄT, te(0,T) (4.15) 
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maximum conditions 

(P+Fu)(u - u°)dg(x)dt > 0 \/ue Uad / < 

/ 
(Fy + FuF)(y-y0)do(x)dt>0 Vy£Yad 

(4.16) 

(4.17) 

where Fy, Fu are Frechet derivatives of F with respect to y) u} respectively at the 

polnt(y°,u0), T:{y€L2(0,T;Hl
o(R°°)); A(t)y + g f 6 I 2 ( Q ) } ->• V is the 

operator related to the equation (4.1)-(4.4) with zero-initial conditions. 

P r o o f We apply the generalized Dubovitskii-Milyutin theorem (Theorem 4.1 
[13]). 

Denote by Qi,Q2,Q3 the sets in the space E := Y x U with elements 
z=((y,^),u). 

d2y 

Qi •= { zЄE; 

A(t)y+-^ = u xЄR°°, tє(0,T) 

y(x,0)=Уl(x) xЄR°° 

\ÌJ '•>•;: i " ' 

дy_, 
дt 

(x,0)=y2(x) xЄR° 

Ö.2 

y(x,t) = 0 

дy [zЄE: (y, Щ Є Y, u Є Uad^ 

xЄT, tє(0,T) 

ЄY, uЄ Uad 

Qs := lz E £; ye Yad, ^ E L2(Q), u E uX 

Thus the optimization problem may be formulated in the form 

7(H, u) --> min subject to (y, u) E Q\ 0 Q2 H Q3 

We aproximate the sets Q\ and Q2 by the regular tangent cones (RTC), the 
set Q3 by the regular admissible cone (RAC) and the performance index by the 
regular improvement cone (RFC) [7], [13]. 

The cone tangent to the set Q\ at z° has the form 

RTC (Qл, z°) = {1ЄE; P'(z°)ž = 0} 

д2ӣ 
A(t)y+-^ = ӣ xЄR 

ӯ(x,0) = yi(x) xЄR 

A(t)y+^ = ӣ xЄR°°, tє(0,T) ^ 

JЄE; 
дy_ 
дt 
ӯ(x,t)=0 

(x,0) = y2(x) xЄR°° 

xЄT, tЄ(0,T) 
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where P'(z°)J is the Frechet differential of the operator 

P (y, % «) := (A(t)y + ~ - u , y(x, 0) - Vl(x), ^(x, 0) - y2(x)) 

mapping from the space V := L2(0,T; HQ(R°°)) X L2(Q) X L2(Q) into the space 
Q := L2(0,T; H^^R00)) x Hl

Q{R°°) x L2(R°°). 
Knowing that there exists a unique solution to the equation (4.1)-(4.4) for 

every u, yi and y2 it is easy to prove that P'(z°) is the mapping from the space 
V onto O, as it is needed in the Lusternik theorem (Theorem 9A [7]). 

The tangent cone RTC(Q2 ,z°) to the set Q2 at z° has the form Yx RTC 
(Uad,u°), where RTC (Uad,u°) is the tangent cone to the set Uad at the point 
u°. 

Following [14] it is easy to show that 

RTC(Q1nQ2,z°) = RTC(Quz°)nRTC(Q2,z°). 

We only need to show the inclusion "D", because always we have "C" [11]. 
It can be easily checked that in the neighbourhood VQ of the point 

' • % ) • < 

the operator P satisfies the assumptions of the implicit function theorem [8]. 
Consequently the set Q\ can be represented in the neighbourhood V0 in the 
form 

{ ( ( - l ) " ) 6 * ("£)=*•>} <«8> 
where (p : L2(Q) i-> L2(0,T; H0(R°°)) x L2(Q) is an operator of the class C1 

satisfying the condition P(<p(u),u) = 0 for u such that (<p(u),u) E Vo-
From this we have 

RTC(Qi,s°) = | J G E\ U ^ \ = <pu(u°)u\ . (4.19) 

Let ((y, §f), tJ) be any element of the set RTC (Qu z°) n RTC(Q2 , z°). 

From the definition of the tangent cone [7] we have that there exists an 

operator r% : R1 »-» U such that -*£1 —> 0 as e -> 0 + and 

((y°,-£) ,«°) +«((y,§).«) + tf.'-) e Q2 (4.20) 

for a sufficiently small e and with any r*(e). 
From (4A8) follows that for sufficiently small e, we have 

p(tfO + ^ + r2(«f)'y= ip(«°) + ep„(ti°)ti + r*(e) 

for some r*(e) such that :•--*—• —-» 0 as e -» 0 + . 
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Taking into account (4.18) and (4.19), we get 

If in (4.20) we have r2

y(e) = rj(e), then it follows from (4.20) and (4.21) that 

([y> if/ >^j i s a n e l e m e n ^ °f * n e c o n e tangent to the set Q\ C\ Q2 at z°. 

It finishes the proof of the inclusion " D " . 
From [11] it is known that tangent cones are closed. 
Further applying Theorem 3.3 [13] we can prove that the adjoint cones 

[RTCQi, 20)]* and [RTC (Q 2 , * 0)]'* are of the same sense [13]. 
The admissible cone RAC(<53,^°) to the set Q3 at z° is RAC(Yad.y°) x 

L2(Q) x U, where RAC (Yad, t/°) is the admissible cone to the set Yaa- at y°. 
Using Theorem 7.5 [7] we find the regular improvement cone 

}iRFC(I,z°) = {zeE; I'(z°)z<Q} 

where V(zQ)z is the Frechet differential of the performance functional. 
By the assumptions (ALl) (A2) this differential exists (compare with the 

example 7.2 [7]) and can be written as 

(Fyy+Full)dg(x)di. 

Q 

If RFC (I, z°) ^ 0, then the adjoint cone to it consists of the elements of the 
form (Theorem 10.2 [7]): 

f4(z) = -Л 0 I (Fyӯ + Fuu)dв(x)dt 

Q 

where Ao > 0. 
Since RTC(<5i, z°) is a subspace of E, then the functionals belonging to 

[RTC(Qi,2 0 )]* are (Theorem 10.1 [7]): 

/i(z) = 0 V J G R T C ( Q i ^ ° ) . 

The functionals /bO?) € [RTC (Q2, z0)]* can be expressed as follows 

f2& = ñ(ӯĄ )+ñ(ӣ) 

where f\ (y, | ) = 0 v ( y , | ) E 7 (Theorem 10.1 [7]), /2

2(u) is the support 

functional to the set Uad at the point u° (Theorem 10.5 [7]). 
Similarly, the functionals h(z) € [RAC (Qs, z0)]* can be expressed as follows 

MJ) = â(ӯ) + fi(Џ )+/!(«) 
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where f$(y) is the support functional to the set Yad at the point y° (Theorem 
10.5 [7]), fi ( § f ) = 0 V f £ L2(Q) and fi(u) =0WeU (Theorem 10.1 [7]). 

Since all assumptions of the Dubovitskii-Milyutin theorem (Theorem 4A 
[13]) are satisfied and we know suitable cones we are now ready to write down 
the Euler-Lagrange equation in the following form 

fl(«) + /s (50 = Ao /(F y y + Fuu)dQ(x)dt = ^Ao J(Fyy+ Fuu)dQ(x)dt+ 

Q Q 

+ \^ ({FyV + Fuu)dQ(x)dt V* £ RTC (Qx, z°). (4.22) 

Q 

We transform JQ FyydQ(x)dt introducing the adjoint variable p by the equa­

tion (4.12)-(4.15) and taking into account that H/, f f j is the solution of 

P'(z°)J = 0 for any fixed u. 

In turn, we get 

J FyydQ(x)dt = J \A(t)p + tgj ydQ(x)dt = J pA(t)ydQ(x)dt + 
Q Q Q 

dtvlde{x)~ J PM\0

de{x) + J ?Wde{x)dt = 

R°° R°° Q 

Q 

Further J FulIdQ(x)dt can be replaced by J FuTydQ(x)dt. 
Q Q 

Taking the above into account from (4.22), we obtain 

ń \ӣ) + IзҶӯ) = ÌЛ O f(p + Fu)ӣde(x)dt + Џ0 í{Fy + FuT)ӯde(x)dt. (4.23) 

Ao in (4.23) cannot be equal to zero, because in this case all functional in the 
Euler-Lagrange equation would be zero, which is impossible according to the 
Dubovitskii-Milyutin theorem. 

Using the definition of the support functional [7] and dividing both sides of 
the obtained inequalities by ^AQ, we finally get (4.16), (4.17). 

If RFC (I, z°) = 0, then optimality conditions (4.8)-(4.17) are fulfilled with 
equalities in the maximum conditions (4.16), (4.17). 

In order to prove sufficiency of the derived conditions of optimality we use the 
fact that the constraints are convex, the performance functional is continuous 
and convex and the Slater condition is satisfied (Theorem 15.2 [7]). 

The uniqueness of the solution to the problem (4.1)-(4.7) follows from the 
strict convexity of the performance functional (4.5) (assumption (^43)). 

This last remark completes the proof of Theorem 4.L 
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