19 research outputs found

    Science cases for a visible interferometer

    Get PDF
    High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHARA offer an immense range of astrophysical studies. Combining more telescopes and moving to visible wavelengths broadens the science cases even more. With the idea of developing strong science cases for a future visible interferometer, we organized a science group around the following topics: pre-main sequence and main sequence stars, fundamental parameters, asteroseismology and classical pulsating stars, evolved stars, massive stars, active galactic nuclei (AGNs) and imaging techniques. A meeting was organized on the 15th and 16th of January, 2015 in Nice with the support of the Action Specific in Haute Resolution Angulaire (ASHRA), the Programme National en Physique Stellaire (PNPS), the Lagrange Laboratory and the Observatoire de la Cote d'Azur, in order to present these cases and to discuss them further for future visible interferometers. This White Paper presents the outcome of the exchanges. This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41

    Modelling continuum intensity perturbations caused by solar acoustic oscillations

    No full text
    Context. Helioseismology is the study of the Sun’s interior using observations of oscillations at the surface. It suffers from systematic errors, for instance a center-to-limb error in travel-time measurements. Understanding these errors requires an adequate understanding of the nontrivial relationship between wave displacement and helioseismic observables (intensity or velocity). Aims. The wave displacement causes perturbations in the atmospheric thermodynamical quantities which, in turn, perturb the opacity, the optical depth, the source function, and the local ray geometry, thus affecting the emergent intensity. We aim to establish the most complete relationship achieved to date between the wave displacement and the emergent intensity perturbation by solving the radiative transfer problem in the perturbed atmosphere. Methods. We derived an expression for the emergent intensity perturbation caused by acoustic oscillations at any point on the solar disk by applying a first-order perturbation theory. As input perturbations, we considerd adiabatic modes of oscillation of different degrees in a spherically-symmetric solar model. The background and the perturbed intensities are computed by solving the radiative transfer equation considering the main sources of opacity in the continuum (absorption and scattering). Results. We find that for all modes, the perturbations to the thermodynamical quantities are not sufficient to model the intensity perturbations: the geometrical effects due to the wave displacement must always be taken into account as they lead to a difference in amplitude and a phase shift between temperature perturbations at the surface and emergent intensity perturbations. The closer to the limb, the greater the differences. For modes with eigenfrequencies around 3 mHz, we found that the radial and horizontal components of the wave displacement are important, in particular, for high-degree modes. Conclusions. This work presents improvements for the computation of the intensity perturbations, in particular, for high-degree modes. Here, we explain the differences in intensity computations seen in earlier works. The phase shifts and amplitude differences between the temperature and intensity perturbations increase toward the limb. This should prove helpful when interpreting some of the systematic centre-to-limb effects observed in local helioseismology. The computations are fast (3 s for 2000 positions and one frequency for one core) and can be parallelised. This work can be extended to models of the line-of-sight velocity observable

    Center-to-limb variation of intensity and polarization in continuum spectra of FGK stars for spherical atmospheres

    No full text
    Aims. One of the necessary parameters needed for the interpretation of the light curves of transiting exoplanets or eclipsing binary stars (as well as interferometric measurements of a star or microlensing events) is how the intensity and polarization of light changes from the center to the limb of a star. Scattering and absorption processes in the stellar atmosphere affect both the center-to-limb variation of intensity (CLVI) and polarization (CLVP). In this paper, we present a study of the CLVI and CLVP in continuum spectra, taking into consideration the different contributions of scattering and absorption opacity for a variety of spectral type stars with spherical atmospheres. Methods. We solve the radiative transfer equation for polarized light in the presence of a continuum scattering, taking into consideration the spherical model of a stellar atmosphere. To cross-check our results, we developed two independent codes that are based on Feautrier and short characteristics methods, respectively, Results. We calculate the center-to-limb variation of intensity (CLVI) and polarization (CLVP) in continuum for the Phoenix grid of spherical stellar model atmospheres for a range of effective temperatures (4000−7000 K), gravities (log g = 1.0−5.5), and wavelengths (4000−7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our codes and compare our calculations for the solar atmosphere with published photometric and polarimetric measurements. We also show that our two codes provide similar results in all considered cases. Conclusions. For sub-giant and dwarf stars (log g = 3.0−4.5), the lower gravity and lower effective temperature of a star lead to higher limb polarization of the star. For giant and supergiant stars (log g = 1.0−2.5), the highest effective temperature yields the largest polarization. By decreasing the effective temperature of a star down to 4500−5500 K (depending on log g), the limb polarization decreases and reaches a local minimum. It increases again with a corresponding decrease in temperature down to 4000 K. For the most compact dwarf stars (log g = 5.0−5.5), the limb polarization degree shows a maximum for models with effective temperatures in the range 4200−4600 K (depending on log g) and decreases toward higher and lower temperatures

    Improved Radiative Transfer in the ANTARES Code

    No full text
    One of the most difficult and time-consuming tasks in multi-dimensional stellar radiative-hydrodynamics simulations is the calculation of the radiation field. We present two major improvements we achieved for the ANTARES code in this context. The first one is the use of Bezier splines in combination with the short characteristic method, resulting in a radiative transfer solver which shows more realistic results (less artifacts) and an increased stability compared to the method used so far. The second improvement presented is a radiative transfer solver based on the Eddington approximation. It allows for fast calculation of the radiation field with only a minor loss of precision. Additionally, it shows good numerical properties. These methods for radiative transfer, as newly-implemented within ANTARES, allow improved numerical results in the case of the Bezier method and much faster calculations in the case of the Eddington approximation
    corecore