45 research outputs found

    Nonvolcanic tremor observed in the Mexican subduction zone

    Get PDF
    Nonvolcanic tremor (NVT) activity is revealed as episodes of higher spectral amplitude at 1–8 Hz in daily spectrograms from the continuous seismological records in Guerrero, Mexico. The analyzed data cover a period of 2001–2007 when in 2001–2002 a large slow slip event (SSE) had occurred in the Guerrero-Oaxaca region, and then a new large SSE occurred in 2006. The tremor burst is dominated by S-waves. More than 100 strong NVT bursts were recorded in the narrow band of ~40 × 150 km^2 to the south of Iguala City and parallel to the coastline. Depths of NVT hypocenters are mostly scattered in the continental crust between 5 and 40 km depth. Tremor activity is higher during the 2001–2002 and 2006 SSE compared with that for the “quiet” period of 2003–2005. While resistivity pattern in Guerrero does not correlate directly with the NVT distribution, gravity and magnetic anomaly modeling favors a hypothesis that the NVT is apparently related to the dehydration and serpentinization processes

    Temporal variations of non-volcanic tremor (NVT) locations in the Mexican subduction zone: Finding the NVT sweet spot.

    Get PDF
    International audienceEpicentral locations of non-volcanic tremors (NVT) in the Mexican subduction zone are determined from the peak of the energy spatial distribution and examined over time. NVT is found to occur persistently at a distance of ∼215 km from the trench, which we term the "Sweet Spot" because this region probably has the proper conditions (i.e., temperature, pressure, and fluid content) for the NVT to occur with minimum shear slip. High-energy NVT episodes are also observed every few months, extending ∼190 km to ∼220 km from the trench with durations of a few weeks. During the 2006 slow slip event (SSE) the duration and the recurrence rate of the NVT episodes increased. Low-energy episodes were also observed, independent from the high-energy episodes, ∼150 km to ∼190 km from the trench during the 2006 SSE. Both the high and low energy episodes were made up of many individual NVT's that had a range of energy-release-rates. However, the highest energy-release-rates of the high-energy episodes were consistently double those of the low-energy episodes and the persistent activity at the Sweet Spot. We suggest that all of the high-energy episodes are evidence of small, short repeat interval SSE. Given this model, the increased recurrence rate of the high-energy NVT episodes during the 2006 long-term SSE implies that short-term SSE's also increase during the SSE and are therefore triggered by the SSE

    Active 650-km Long Fault System and Xolapa Sliver in Southern Mexico

    Get PDF
    New estimates of long-term velocities of permanent GPS stations in Southern Mexico reveal that the geologically discernible 650-km long shear zone, which strikes parallel to the Middle America trench, is active. This left-lateral strike-slip, La Venta–Chacalapa (LVC) fault system, is apparently associated with a motion of the Xolapa terrain and at the present time is the northern boundary of a 110–160-km wide forearc sliver with a sinistral motion of 3–6 mm/year with respect to the North America plate. This sliver is the major tectonic feature in the Guerrero and Oaxaca regions, which accommodates most of the oblique component of the convergence between the Cocos and North America plates. Previous studies based purely on the moment tensor coseismic slips exceedingly overestimated the sliver inland extent and allocated its northern margin on or to the north of the Trans-Mexican Volcanic Belt. While the LVC fault system probably slips slowly over geologic scale time and there is not any historic evidence of large earthquakes on the fault so far, its seismic potential could be very high, assuming a feasible order of 103 years recurrence cycle. A detailed analysis of long-term position time series of permanent GPS stations in the Guerrero and Oaxaca states, Southern Mexico discards previous models and provides clear evidence of an active LVC fault zone bounding the Xolapa forearc sliver. The southeastward motion of this sliver may have persisted for the last 8–10 Million year and played an important role in the tectonic evolution of the region

    GPS Constraints on the Mw = 7.5 Ometepec Earthquake Sequence, Southern Mexico: Coseismic and Post-Seismic Deformation

    Get PDF
    We use continuous GPS measurements from 31 stations in southernMexico to model coseismic slip and post-seismic deformation from the 2012 March 20 Mw = 7.5 Ometepec earthquake, the first large thrust earthquake to occur below central Mexico during the modern GPS era. Coseismic offsets ranging from ∼280 mm near the epicentre to 5 mm or less at sites far from the epicentre are fit best by a rupture focused between ∼15 and 35 km depth, consistent with an independent seismological estimate. The corresponding geodetic moment of 1.4 × 1020 N·m is within 10 per cent of two independent seismic estimates. Transient post-seismic motion recorded by GPS sites as far as 300 km from the rupture has a different horizontal deformation gradient and opposite sense of vertical motion than do the coseismic offsets. A forward model of viscoelastic relaxation as a result of our new coseismic slip solution incorrectly predicts uplift in areas where post-seismic subsidence was recorded and indicates that viscoelastic deformation was no more than a few per cent of the measured post-seismic deformation. The deformation within 6 months of the earthquake was thus strongly dominated by fault afterslip. The post-seismic GPS time-series are well fit as logarithmically decaying fault afterslip on an area of the subduction interface up to 10 times larger than the earthquake rupture zone, extending as far as 220 km inland. Afterslip had a cumulative geodetic moment of 2.0 × 1020 N·m, ∼40 per cent larger than the Ometepec earthquake. Tests for the shallow and deep limits for the afterslip require that it included much of the earthquake rupture zone as well as regions of the subduction interface where slow slip events and non-volcanic tremor have been recorded and areas even farther downdip on the flat interface. Widespread afterslip below much of central Mexico suggests that most of the nearly flat subduction interface in this region is conditionally stable and thus contributes measurable transient deformation to large areas of Mexico south of and in the volcanic belt

    Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador

    Get PDF
    International audienceNew GPS measurements in Chiapas (Mexico), Guatemala and El Salvador are used to constrain the fault kinematics in the North America (NA), Caribbean (CA) and Cocos (CO) plates triple junction area. The regional GPS velocity field is first analysed in terms of strain partitioning across the major volcano-tectonic structures, using elastic half-space modelling, then inverted through a block model. We show the dominant role of the Motagua Fault with respect to the Polochic Fault in the accommodation of the present-day deformation associated with the NA and CA relative motion. The NA/CA motion decreases from 18-22 mm yr−1 in eastern Guatemala to 14-20 mm yr−1 in central Guatemala (assuming a uniform locking depth of 14-28 km), down to a few millimetres per year in western Guatemala. As a consequence, the western tip of the CA Plate deforms internally, with ≃9 mm yr−1 of east-west extension (≃5 mm yr−1 across the Guatemala city graben alone). Up to 15 mm yr−1 of dextral motion can be accommodated across the volcanic arc in El Salvador and southeastern Guatemala. The arc seems to mark the northern boundary of an independent forearc sliver (AR), pinned to the NA plate. The inversion of the velocity field shows that a four-block (NA, CA, CO and AR) model, that combines relative block rotations with elastic deformation at the block boundaries, can account for most of the GPS observations and constrain the overall kinematics of the active structures. This regional modelling also evidences lateral variations of coupling at the CO subduction interface, with a fairly high-coupling (≃0.6) offshore Chiapas and low-coupling (≃0.25) offshore Guatemala and El Salvador

    GPS constraints on deformation in northern Central America from 1999 to 2017, Part 1 – Time-dependent modelling of large regional earthquakes and their post-seismic effects

    Get PDF
    We use continuous and campaign measurements from 215 GPS sites in northern Central America and southern Mexico to estimate coseismic and afterslip solutions for the 2009 Mw = 7.3 Swan Islands fault strike-slip earthquake and the 2012 Mw = 7.3 El Salvador and Mw = 7.4 Guatemala thrust-faulting earthquakes on the Middle America trench. Our simultaneous, time-dependent inversion of more than 350 000 daily GPS site positions gives the first jointly consistent estimates of the coseismic slips for all three earthquakes, their combined time-dependent post-seismic effects and secular station velocities corrected for both the coseismic and post-seismic deformation. Our geodetic slip solutions for all three earthquakes agree with previous estimates that were derived via static coseismic-offset modelling. Our time-dependent model, which attributes all transient post-seismic deformation to earthquake afterslip, fits nearly all of the continuous GPS site position time-series within their severalmillimetre position noise. Afterslip moments for the three earthquakes range from 35 to 140 per cent of the geodetic coseismic moments, with the largest afterslip estimated for the 2012 El Salvador earthquake along the weakly coupled El Salvador trench segment. Forward modelling of viscoelastic deformation triggered by all three earthquakes for a range of assumed mantle and lower crustal viscosities suggests that it accounts for under 20 per cent of the observed post-seismic deformation and possibly under 10 per cent

    Sediment fill in the Middle America Trench inferred from gravity anomalies

    Get PDF
    Una secuencia de perfiles de anomalía de gravedad de aire libre a través de la Trinchera de Mesoamérica es usada para modelar el relleno sedimentario de los facies sedimentarios no consolidados pelágicos y hemipelágicos y del material parcialmente alterado del basamento. La diferencia entre los mínimos gravimétricos y batimétricos se utiliza en la estimación de la cantidad de los sedimentos de densidad baja. El efecto de gravedad de relleno es relativamente pequeño, sugiriendo que el proceso mayor en la Trinchera de Mesoamérica es la subducción de sedimentos y el raspar de los sedimentos pelágicos desde la cima de la placa oceánica subducida. El volumen de los sedimentos en la trinchera tiende a incrementarse hacia el sur desde Jalisco hasta Oaxaca. Esta tendencia está menos clara en la Cuenca de Guatemala. Hay una cierta correlación entre el monto de relleno sedimentario fresco y la velocidad de convergencia a la trinchera excepto los perfiles con una contribución terrígena de sedimentos o las áreas de subducción de las entidades batimétricas importantes. doi: https://doi.org/10.22201/igeof.00167169p.2003.42.4.31

    Intraslab seismicity and thermal stress in the subducted Cocos plate beneath central Mexico

    No full text
    We present a model of the subducting Cocos slab beneath Central Mexico, that provides an explanation for stresses causing the occurrence of the majority of the intraslab earthquakes which are concentrated in a long flat segment. Based on the recently developed thermal models for the Central Mexico subduction zone, the thermal stresses due to non-uniform temperature contrast in the subducting slab are calculated using a finite element approach. The slab is considered purely elastic but due to high temperature at its bottom the behavior is considered as ductile creep. The calculation results show a ∼ 20 km slab core characterized by a tensional state of stress with stresses up to 70 MPa. On the other hand, the top of the slab experiences high compressive thermal stresses up to 110 MPa, depending on the elastic constants used and location along the flat part of the subducting plate. These compressive stresses at the top of the slab are not consistent with the exclusive normal fault intraslab earthquakes, and two different sources of stress are proposed. The trenchward migration of the Mexican volcanic arc for the last 7 Ma indicates an increase of the slab dip through time. This observation suggests that the gravity torque might exceed the suction torque. Considering the flat slab as an embedded plate subject to an applied clockwise net torque of 0.5 × 10^(16)–1.5 × 10^(16) N m, the upper half would exhibit tensional stresses of 40–110 MPa that can actually balance the compressive thermally induced stresses. An alternative stress source might come from the slab pull force caused by the slab positive density anomaly. Based on our density anomaly estimations (75 ± 20 kg/m^3), a 350 km slab length, dipping at 20° into the asthenosphere, induces a slab pull force of 1.7 × 10^(12)–4.6 × 10^(12) N m. This force produces a tensional stress of 41–114 MPa, sufficient to balance the compressive thermal stresses at the top of the flat slab. The linear superposition of the thermally and torque or slab pull induced stresses shows tensile stresses up to 60–180 MPa inside the flat slab core. Also, our results suggest that the majority of the intraslab earthquakes inside the flat slab are situated where the resultant stresses are larger than 40–80 MPa. This study provides a reasonable explanation for the existence of exclusively normal fault intraslab earthquakes in the flat slab beneath Central Mexico, and also it shows that thermal stresses due to non-uniform reheating of subducting slabs play a considerable role in the total stress field
    corecore