47 research outputs found

    The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully.</p> <p>Results</p> <p>To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb <it>in vivo </it>function (NAAIRS<sub>92</sub>, NAAIRS<sub>122</sub>) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking <it>EST1</it>, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres.</p> <p>Conclusions</p> <p>These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of <it>S. cerevisiae </it>Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.</p

    SERUM LEVELS OF INTERLEUKIN-6 AND TUMOR NECROSIS FACTOR-ALPHA IN EXACERBATION AND REMISSION PHASE OF SCHIZOPHRENIA

    Get PDF
    Background: The variations in proinflamatory cytokine levels have been associated with schizophrenia (SCH), duration of illness, psychopathology and treatment. The aim of the study was to investigate serum levels of interleukin-6 (IL-6) and tumor necrosis factoralpha (TNF-α) in schizophrenic patients during exacerbation and remission, and its association with course of illness and therapy. Subjects and methods: We measured serum levels of IL-6 and TNF-α in 43 schizophrenic patients in exacerbation and remission and compared them to 29 healthy controls, matched by sex, age, body mass index (BMI) and smoking habits. The severity of psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). Results: There was no difference in levels of IL-6 and TNF-α in exacerbation compared to remission in schizophrenic patients. IL-6 was higher and TNF-α was lower in schizophrenic patients in both exacerbation and remission in comparison with healthy controls. TNF-α in exacerbation was in negative correlation with IL-6 in remission. No statistical significance was found between levels of cytokines and sex, age, BMI, smoking habits, antipsychotic medication, duration of treatment and duration of illness. IL-6 levels were in positive correlation with the age of onset and the duration of untreated psychosis. In schizophrenic patients on adjunctive treatment with mood stabilizers, TNF-α levels increased in remission. Conclusion: Our results suggest that the connection between schizophrenia, cytokines and medication is multifaceted, and not necessarily linear. Adjunct mood stabilizers not only ameliorate psychopathology, but might convey immunomodulatory effects as well. Further longitudinal studies could elucidate potential beneficial effect of combined therapy in treatment of SCH

    Dietary Patterns and Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue

    Get PDF
    Importance—Fusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of host immune response to tumor. Evidence also suggests that diet influences intestinal F. nucleatum. However, the role of F. nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown. Objective—To test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F. nucleatum in tumor tissue. Design—Prospective cohort study. Setting—The Nurses’ Health Study (1980–2012) and the Health Professionals Follow-up Study (1986–2012). Participants—121,700 US female nurses and 51,529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively, at enrollment. Exposures—Prudent and Western dietary patterns. Main Outcomes and Measures—Incidence of colorectal carcinoma subclassified by F. nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction. Results—We documented 1,019 incident colon and rectal cancer cases with available F. nucleatum data among predominantly white 137,217 individuals over 26–32 years of follow-up encompassing 3,643,562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F. nucleatum status (Pheterogeneity = .01). Prudent diet score was associated with a lower risk of F. nucleatum-positive cancers [Ptrend = .003; multivariable hazard ratio of 0.43 (95% confidence interval 0.25–0.72) for the highest vs. the lowest prudent score quartile], but not with F. nucleatum-negative cancers (Ptrend = .47). Dietary component analyses suggested possible differential associations for the cancer subgroups according to intakes of dietary fiber (Pheterogeneity = .02). There was no significant heterogeneity between the subgroups according to Western dietary pattern scores (Pheterogeneity = .23). Conclusions and Relevance—Prudent diets rich in whole grains and dietary fiber are associated with a lower risk for F. nucleatum-positive colorectal cancer but not F. nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms

    Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response

    Get PDF
    The pattern recognition receptor RIG-I is critical for Type-I interferon production. However, the global regulation of RIG-I signaling is only partially understood. Using a human genome-wide RNAi-screen, we identified 226 novel regulatory proteins of RIG-I mediated interferon-β production. Furthermore, the screen identified a metabolic pathway that synthesizes the inositol pyrophosphate 1-IP7 as a previously unrecognized positive regulator of interferon production. Detailed genetic and biochemical experiments demonstrated that the kinase activities of IPPK, PPIP5K1 and PPIP5K2 (which convert IP5 to1-IP7) were critical for both interferon induction, and the control of cellular infection by Sendai and influenza A viruses. Conversely, ectopically expressed inositol pyrophosphate-hydrolases DIPPs attenuated interferon transcription. Mechanistic experiments in intact cells revealed that the expression of IPPK, PPIP5K1 and PPIP5K2 was needed for the phosphorylation and activation of IRF3, a transcription factor for interferon. The addition of purified individual inositol pyrophosphates to a cell free reconstituted RIG-I signaling assay further identified 1-IP7 as an essential component required for IRF3 activation. The inositol pyrophosphate may act by β-phosphoryl transfer, since its action was not recapitulated by a synthetic phosphonoacetate analogue of 1-IP7. This study thus identified several novel regulators of RIG-I, and a new role for inositol pyrophosphates in augmenting innate immune responses to viral infection that may have therapeutic applications

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity in industrial populations is associated with chronic diseases, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces

    A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    Get PDF
    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes

    The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes

    Get PDF
    SummaryColonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors

    Prognostically relevant gene signatures of high-grade serous ovarian carcinoma

    Get PDF
    Because of the high risk of recurrence in high-grade serous ovarian carcinoma (HGS-OvCa), the development of outcome predictors could be valuable for patient stratification. Using the catalog of The Cancer Genome Atlas (TCGA), we developed subtype and survival gene expression signatures, which, when combined, provide a prognostic model of HGS-OvCa classification, named “Classification of Ovarian Cancer” (CLOVAR). We validated CLOVAR on an independent dataset consisting of 879 HGS-OvCa expression profiles. The worst outcome group, accounting for 23% of all cases, was associated with a median survival of 23 months and a platinum resistance rate of 63%, versus a median survival of 46 months and platinum resistance rate of 23% in other cases. Associating the outcome prediction model with BRCA1/BRCA2 mutation status, residual disease after surgery, and disease stage further optimized outcome classification. Ovarian cancer is a disease in urgent need of more effective therapies. The spectrum of outcomes observed here and their association with CLOVAR signatures suggests variations in underlying tumor biology. Prospective validation of the CLOVAR model in the context of additional prognostic variables may provide a rationale for optimal combination of patient and treatment regimens

    Keystone microbiome meeting 2012: a mountain top experience

    No full text
    corecore