153 research outputs found

    Incorporating self-reported health measures in risk equalization through constrained regression

    Get PDF
    Most health insurance markets with premium-rate restrictions include a risk equalization system to compensate insurers for predictable variation in spending. Recent research has shown, however, that even the most sophisticated risk equalization systems tend to undercompensate (overcompensate) groups of people with poor (good) self-reported health, confronting insurers with incentives for risk selection. Self-reported health measures are generally considered infeasible for use as an explicit ‘risk adjuster’ in risk equalization models. This study examines an alternative way to exploit this information, namely through ‘constrained regression’ (CR). To do so, we use administrative data (N = 17 m) and health survey information (N = 380 k) from the Netherlands. We estimate five CR models and compare these models with the actual Dutch risk equalization model of 2016 which was estimated by ordinary least squares (OLS). In the CR models, the estimated coefficients are restricted, such that t

    The LRAT(-/-) rat: CRISPR/Cas9 construction and phenotyping of a new animal model for retinitis pigmentosa

    Get PDF
    Purpose: We developed and phenotyped a pigmented knockout rat model for lecithin retinol acyltransferase (LRAT) using CRISPR/Cas9. The introduced mutation (c.12delA) is based on a patient group harboring a homologous homozygous frameshift mutation in the LRAT gene (c.12delC), causing a dysfunctional visual (retinoid) cycle. Methods: The introduced mutation was confirmed by DNA and RNA sequencing. The expression of Lrat was determined on both the RNA and protein level in wildtype and knockout animals using RT-PCR and immunohistochemistry. The retinal structure and function, as well as the visual behavior of the Lrat(-/-) and control rats, were characterized using scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), electroretinography (ERG) and vision-based behavioral assays. Results: Wildtype animals had high Lrat mRNA expression in multiple tissues, including the eye and liver. In contrast, hardly any expression was detected in Lrat(-/-) animals. LRAT protein was abundantly present in wildtype animals and absent in Lrat(-/-) animals. Lrat(-/-) animals showed progressively reduced ERG potentials compared to wildtype controls from two weeks of age onwards. Vison-based behavioral assays confirmed reduced vision. Structural abnormalities, such as overall retinal thinning, were observed in Lrat(-/-) animals. The retinal thickness in knockout rats was decreased to roughly 80% by four months of age. No functional or structural differences were observed between wildtype and heterozygote animals. Conclusions: Our Lrat(-/-) rat is a new animal model for retinal dystrophy, especially for the LRAT-subtype of early-onset retinal dystrophies. This model has advantages over the existing mouse models and the RCS rat strain and can be used for translational studies of retinal dystrophies.Ophthalmic researc

    Exercise SBP response and incident depressive symptoms: The Maastricht Study

    Get PDF
    Objective : An exaggerated exercise SBP, which is potentially modifiable, may be associated with incident depressive symptoms via an increased pulsatile pressure load on the brain. However, the association between exaggerated exercise SBP and incident depressive symptoms is unknown. Therefore, we examined whether exaggerated exercise SBP is associated with a higher risk of depressive symptoms over time. Methods : We used longitudinal data from the population-based Maastricht Study, with only individuals free of depressive symptoms at baseline included (n = 2121; 51.3% men; age 59.5 +/- 8.5 years). Exercise SBP was measured at baseline with a submaximal exercise cycle test. We calculated a composite score of exercise SBP based on four standardized exercise SBP measures: SBP at moderate workload, SBP at peak exercise, SBP change per minute during exercise and SBP 4 min after exercise. Clinically relevant depressive symptoms were determined annually at follow-up and defined as a Patient Health Questionnaire score of at least 10. Results : After a mean follow-up of 3.9 years, 175 participants (8.3%) had incident clinically relevant depressive symptoms. A 1 SD higher exercise SBP composite score was associated with a higher incidence of clinically relevant depressive symptoms [hazard ratio: 1.27 (95% confidence interval: 1.04-1.54)]. Results were adjusted for age, sex, education level, glucose metabolism status, lifestyle, cardiovascular risk factors, resting SBP and cardiorespiratory fitness. Conclusion : A higher exercise SBP response is associated with a higher incidence of clinically relevant depressive symptoms

    Defining phenotype, tropism, and retinal gene therapy using adeno-associated viral vectors (AAVs) in new-born Brown Norway rats with a spontaneous mutation in Crb1

    Get PDF
    Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Muller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Muller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10(Y445F) vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10(Y445F) at P5 or P8 resulted in efficient infection of mainly Muller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10(Y445F) to infect Muller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Muller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.Ophthalmic researc

    Luminescence spectra and kinetics of disordered solid solutions

    Get PDF
    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative” localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1−c)Sec and ZnSe(1−c)Tec solid solutions. Further, the experimental results are presented for the temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the measurements of the decay of the spectrally integrated luminescence intensity at long delay times are presented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence

    Model Analysis of Time Reversal Symmetry Test in the Caltech Fe-57 Gamma-Transition Experiment

    Full text link
    The CALTECH gamma-transition experiment testing time reversal symmetry via the E2/M1 mulipole mixing ratio of the 122 keV gamma-line in Fe-57 has already been performed in 1977. Extending an earlier analysis in terms of an effective one-body potential, this experiment is now analyzed in terms of effective one boson exchange T-odd P-even nucleon nucleon potentials. Within the model space considered for the Fe-57 nucleus no contribution from isovector rho-type exchange is possible. The bound on the coupling strength phi_A from effective short range axial-vector type exchange induced by the experimental bound on sin(eta) leads to phi_A < 10^{-2}.Comment: 5 pages, RevTex 3.

    Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease

    Get PDF
    Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening

    The epitaxy of gold

    Full text link
    corecore