52 research outputs found

    The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus.

    Get PDF
    BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus

    Neuronal data analysis based on the empirical cumulative entropy

    Get PDF
    We propose the empirical cumulative entropy as a variability measure suitable to describe the information content in neuronal firing data. Some useful characteristics and an application to a real dataset are also discussed

    Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee

    No full text
    Exposure to stressful low temperatures during development can result in the accumulation of deleterious physiological effects called chill injury. Metabolic imbalances, disruptions in ion homeostasis and oxidative stress contribute to the increased mortality of chill-injured insects. Interestingly, survival can be significantly increased when chill-susceptible insects are exposed to a daily warm-temperature pulse during chilling. We hypothesize that warm pulses allow for the repair of damage associated with chill injury. Here, we describe transcriptional responses during exposure to a fluctuating thermal regime, relative to constant chilled temperatures, during pupal development in the alfalfa leafcutting bee, Megachile rotundata, using a combination of RNA-seq and qPCR. Pupae were exposed to either a constant, chilled temperature of 6 degrees C, or 6 degrees C with a daily pulse of 20 degrees C for 7 days. RNA-seq after experimental treatment revealed differential expression of transcripts involved in construction of cell membranes, oxidation-reduction and various metabolic processes. These mechanisms provide support for shared physiological responses to chill injury across taxa. The large number of differentially expressed transcripts observed after 7 days of treatment suggests that the initial divergence in expression profiles between the two treatments occurred upstream of the time point sampled. Additionally, the differential expression profiles observed in this study show little overlap with those differentially expressed during temperature stress in the diapause state of M. rotundata. While the mechanisms governing the physiological response to lowtemperature stress are shared, the specific transcripts associated with the response differ between life stages

    _

    No full text
    SUMMARY Coping with seasonal changes in temperature is an important factor underlying the ability of insects to survive over the harsh winter conditions in the northern temperate zone, and only a few drosophilids have been able to colonize sub-polar habitats. Information on their winter physiology is needed as it may shed light on the adaptive mechanisms of overwintering when compared with abundant data on the thermal physiology of more southern species, such as Drosophila melanogaster. Here we report the first seasonal metabolite analysis in a Drosophila species. We traced changes in the cold tolerance and metabolomic profiles in adult Drosophila montana flies that were exposed to thermoperiods and photoperiods similar to changes in environmental conditions of their natural habitat in northern Finland. The cold tolerance of diapausing flies increased noticeably towards the onset of winter; their chill coma recovery times showed a seasonal minimum between late autumn and early spring, whereas their survival after cold exposure remained high until late spring. The flies had already moderately accumulated glucose, trehalose and proline in autumn, but the single largest change occurred in myo-inositol concentrations. This increased up to 400-fold during the winter and peaked at 147nmolmg -1 fresh mass, which is among the largest reported accumulations of this compound in insects. Supplementary material available online a
    corecore