804 research outputs found

    Melting of regular and decoupled vortex lattices in BSCCO crystals

    Full text link
    The angular dependence of the first-order phase transition (FOT) in the vortex lattice in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} crystals was investigated by a low frequency AC shielding technique (with the AC field c\parallel c), in which the static-field component parallel to cc- (HH_{\perp}) was varied with the in-plane field HH_{\parallel} held constant. The linear decrease of the FOT field HFOTH_{\perp}^{FOT} with increasing HH_{\parallel} ends at a temperature--dependent critical value of HH_{\parallel}. A new transition, marked by the abrupt drop of the abab-plane shielding current, appears at this point. We draw a new phase diagram with HH_{\parallel} and HH_{\perp} field components as coordinates; this features at least two distinct regions in the vortex solid phase, that are determined by the different interplay between the pancake vortex-- and Josephson vortex lattice.Comment: 2 pages, 2 figures Paper submitted to the conference proceedings of M2S-2000 Houston, T

    Vortex liquid correlations induced by in-plane field in underdoped Bi2Sr2CaCu2O8+d

    Full text link
    By measuring the Josephson Plasma Resonance, we have probed the influence of an in-plane magnetic field on the pancake vortex correlations along the c-axis in heavily underdoped Bi2Sr2CaCu2O8+d (Tc = 72.4 +/- 0.6 K) single crystals both in the vortex liquid and in the vortex solid phase. Whereas the in-plane field enhances the interlayer phase coherence in the liquid state close to the melting line, it slightly depresses it in the solid state. This is interpreted as the result of an attractive force between pancake vortices and Josephson vortices, apparently also present in the vortex liquid state. The results unveil a boundary between a correlated vortex liquid in which pancakes adapt to Josephson vortices, and the usual homogeneous liquid.Comment: 2 pages, submitted to the Proceedings of M2S HTSC VIII Dresde

    Tilted and crossing vortex chains in layered superconductors

    Full text link
    In the presence of the Josephson vortex lattice in layered superconductors, a small c-axis magnetic field penetrates in the form of vortex chains. In general, the structure of a single chain is determined by the ratio of the London [λ\lambda] and Josephson [λJ\lambda_{J}] lengths, α=λ/λJ\alpha= \lambda/\lambda_{J}. The chain is composed of tilted vortices at large α\alpha's (tilted chain) and at small α\alpha's it consists of a crossing array of Josephson vortices and pancake-vortex stacks (crossing chain). We study chain structures at intermediate α\alpha's and found two types of phase transitions. For α0.6\alpha\lesssim 0.6 the ground state is given by the crossing chain in a wide range of pancake separations a[23]λJa\gtrsim [2-3]\lambda_J. However, due to attractive coupling between deformed pancake stacks, the equilibrium separation can not exceed some maximum value depending on the in-plane field and α\alpha. The first phase transition takes place with decreasing pancake-stack separation aa at a=[12]λJa=[1-2]\lambda_{J}, and rather wide range of the ratio α\alpha, 0.4α0.650.4 \lesssim \alpha\lesssim 0.65. With decreasing aa, the crossing chain goes through intermediate strongly-deformed configurations and smoothly transforms into a tilted chain via a second-order phase transition. Another phase transition occurs at very small densities of pancake vortices, a[2030]λJa\sim [20-30]\lambda_J, and only when α\alpha exceeds a certain critical value 0.5\sim 0.5. In this case a small c-axis field penetrates in the form of kinks. However, at very small concentration of kinks, the kinked chains are replaced with strongly deformed crossing chains via a first-order phase transition. This transition is accompanied by a very large jump in the pancake density.Comment: Proceeding of the NATO ARW "Vortex dynamics in superconductors and other complex systems", Yalta, Crimea, Ukraine, 13-17 September 2004, To be published in the Journ. of Low Temp. Phys., 16 pages, 6 figure

    Plasmonic shock waves and solitons in a nanoring

    Get PDF
    We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly non-linear plasma shock waves. These excitations produce a series of the well resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz band) using optically controlled ultra low loss electric, photonic and magnetic devices.Comment: 13 pages, 12 figure

    Josephson vortices and solitons inside pancake vortex lattice in layered superconductors

    Full text link
    In very anisotropic layered superconductors a tilted magnetic field generates crossing vortex lattices of pancake and Josephson vortices (JVs). We study the properties of an isolated JV in the lattice of pancake vortices. JV induces deformations in the pancake vortex crystal, which, in turn, substantially modify the JV structure. The phase field of the JV is composed of two types of phase deformations: the regular phase and vortex phase. The phase deformations with smaller stiffness dominate. The contribution from the vortex phase smoothly takes over with increasing magnetic field. We find that the structure of the cores experiences a smooth yet qualitative evolution with decrease of the anisotropy. At large anisotropies pancakes have only small deformations with respect to position of the ideal crystal while at smaller anisotropies the pancake stacks in the central row smoothly transfer between the neighboring lattice positions forming a solitonlike structure. We also find that even at high anisotropies pancake vortices strongly pin JVs and strongly increase their viscous friction.Comment: 22 pages, 11 figures, to appear in Phys. Rev.

    Plasma resonance at low magnetic fields as a probe of vortex line meandering in layered superconductors

    Full text link
    We consider the magnetic field dependence of the plasma resonance frequency in pristine and in irradiated Bi2_2Sr2_2CaCu2_2O8_8 crystals near TcT_c. At low magnetic fields we relate linear in field corrections to the plasma frequency to the average distance between the pancake vortices in the neighboring layers (wandering length). We calculate the wandering length in the case of thermal wiggling of vortex lines, taking into account both Josephson and magnetic interlayer coupling of pancakes. Analyzing experimental data, we found that (i) the wandering length becomes comparable with the London penetration depth near Tc_{c} and (ii) at small melting fields (<20< 20 G) the wandering length does not change much at the melting transition. This shows existence of the line liquid phase in this field range. We also found that pinning by columnar defects affects weakly the field dependence of the plasma resonance frequency near TcT_c.Comment: RevTex, 4 pages, 2 PS figures, Submitted to Phys. Rev.

    Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region

    Get PDF
    Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova &amp; Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The&nbsp;material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4&nbsp;corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The&nbsp;range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns
    corecore