31 research outputs found

    On the coalescence-dispersion modeling of turbulent molecular mixing

    Get PDF
    The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry

    A Priori Testing of Turbulent Mixing Models for Subgrid-scale Mixing and Reaction

    Get PDF

    An adaptive mesh refinement method for solution of the transported PDF equation

    Get PDF
    This paper presents the results of an investigation into a possible alternative to Monte Carlo methods for solving the transported probability density function (PDF) equation for scalars (compositions). The method uses a finite‐volume approach combined with adaptive mesh refinement (AMR) in a multi‐dimensional compositional space. Comparisons are made between the new method and Monte Carlo solutions for analytical test cases involving the reaction of two or three chemical species. These tests demonstrate the potential of the new method in terms of both accuracy and run time. Additional test cases involving various models for molecular mixing were also conducted with similar conclusions

    Effects of Buoyancy and Forcing on Transitioning and Turbulent Lifted Flames

    No full text
    The objectives of this paper are two-fold. First, a numerical scheme for the simulation of a buoyant, reacting jet is presented with special attention given to boundary conditions. In the absence of coflow, a jet flame is particularly sensitive to boundary conditions enforced upon the computational domain. However, careful consideration of proper boundary conditions can minimize their effect upon the overall simulation. Second, results of some preliminary simulations are presented over a range of Froude and Damkohler numbers. This range was chosen so as to produce lifted flames in both normal gravity and microgravity environments
    corecore