47 research outputs found

    Matrix Metalloproteinase-9 Expression Is Associated with the Absence of Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients

    Full text link
    Triple-negative breast cancer (TNBC) is particularly challenging due to the weak or absent response to therapeutics and its poor prognosis. The effectiveness of neoadjuvant chemotherapy (NAC) response is strongly influenced by changes in elements of the tumor microenvironment (TME). This work aimed to characterize the residual TME composition in 96 TNBC patients using immunohistochemistry and in situ hybridization techniques and evaluate its prognostic implications for partial responders vs. non-responders. Compared with non-responders, partial responders containing higher levels of CD83+ mature dendritic cells, FOXP3+ regulatory T cells, and IL-15 expression but lower CD138+ cell concentration exhibited better OS and RFS. However, along with tumor diameter and positive nodal status at diagnosis, matrix metalloproteinase-9 (MMP-9) expression in the residual TME was identified as an independent factor associated with the impaired response to NAC. This study yields new insights into the key components of the residual tumor bed, such as MMP-9, which is strictly associated with the lack of a pathological response to NAC. This knowledge might help early identification of TNBC patients less likely to respond to NAC and allow the establishment of new therapeutic targets

    Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response

    Full text link
    Simple Summary Triple-negative breast cancer (TNBC) is currently in the clinical research spotlight because of the tumor's aggressive and invasive nature and the scarcity of therapeutic targets. Despite recent advances in identifying reliable prognostic biomarkers in the tumor microenvironment (TME), rigorous evaluation of their predictive capacity remains challenging. We describe the immune cellular and genetic profile of the residual tumor of TNBC that does not achieve a pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). A high concentration of lymphocytes and dendritic cells, as well as genetic TME markers such as MUC-1 and CXCL13 in the residual tumor, are valuable prognostic factors of survival and relapse in TNBC patients. From a clinical health perspective, a thorough understanding of the composition of the TME and its prognostic implications might yield relevant immunological information and reveal key predictive biomarkers. This could ultimately help substantially improve the outcomes of residual cancer-burdened TNBC patients after NAC. With a high risk of relapse and death, and a poor or absent response to therapeutics, the triple-negative breast cancer (TNBC) subtype is particularly challenging, especially in patients who cannot achieve a pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). Although the tumor microenvironment (TME) is known to influence disease progression and the effectiveness of therapeutics, its predictive and prognostic potential remains uncertain. This work aimed to define the residual TME profile after NAC of a retrospective cohort with 96 TNBC patients by immunohistochemical staining (cell markers) and chromogenic in situ hybridization (genetic markers). Kaplan-Meier curves were used to estimate the influence of the selected TME markers on five-year overall survival (OS) and relapse-free survival (RFS) probabilities. The risks of each variable being associated with relapse and death were determined through univariate and multivariate Cox analyses. We describe a unique tumor-infiltrating immune profile with high levels of lymphocytes (CD4, FOXP3) and dendritic cells (CD21, CD1a and CD83) that are valuable prognostic factors in post-NAC TNBC patients. Our study also demonstrates the value of considering not only cellular but also genetic TME markers such as MUC-1 and CXCL13 in routine clinical diagnosis to refine prognosis modelling

    Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images

    Get PDF
    Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining

    Peritumoral immune infiltrates in primary tumours are not associated with the presence of axillary lymph node metastasis in breast cancer: a retrospective cohort study

    Get PDF
    Background. The axillary lymph nodes (ALNs) in breast cancer patients are the body regions to where tumoral cells most often first disseminate. The tumour immune response is important for breast cancer patient outcome, and some studies have evaluated its involvement in ALN metastasis development. Most studies have focused on the intratumoral immune response, but very few have evaluated the peritumoral immune response. The aim of the present article is to evaluate the immune infiltrates of the peritumoral area and their association with the presence of ALN metastases. Methods. The concentration of 11 immune markers in the peritumoral areas was studied in 149 patients diagnosed with invasive breast carcinoma of no special type (half of whom had ALN metastasis at diagnosis) using tissue microarrays, immunohistochemistry and digital image analysis procedures. The differences in the concentration of the immune response of peritumoral areas between patients diagnosed with and without metastasis in their ALNs were evaluated. A multivariate logistic regression model was developed to identify the clinical-pathological variables and the peritumoral immune markers independently associated with having or not having ALN metastases at diagnosis. Results. No statistically significant differences were found in the concentrations of the 11 immune markers between patients diagnosed with or without ALN metastases. Patients with metastases in their ALNs had a higher histological grade, more lymphovascular and perineural invasion and larger-diameter tumours. The multivariate analysis, after validation by bootstrap simulation, revealed that only tumour diameter (OR = 1.04; 95% CI [1.00-1.07]; p = 0.026), lymphovascular invasion (OR = 25.42; 95% CI [9.57-67.55]; p<0.001) and histological grades 2 (OR = 3.84; 95% CI [1.11-13.28]; p = 0.033) and 3 (OR = 5.18; 95% CI [1.40-19.17]; p = 0.014) were associated with the presence of ALN metastases at diagnosis. This study is one of the first to study the association of the peritumoral immune response with ALN metastasis. We did not find any association of peritumoral immune infiltrates with the presence of ALN metastasis. Nevertheless, this does not rule out the possibility that other peritumoral immune populations are associated with ALN metastasis. This matter needs to be examined in greater depth, broadening the types of peritumoral immune cells studied, and including new peritumoral areas, such as the germinal centres of the peritumoral tertiary lymphoid structures found in extensively infiltrated neoplastic lesions

    A Third Measure-Metastable State in the Dynamics of Spontaneous Shape Change in Healthy Human's White Cells

    Get PDF
    Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, “random” state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter. Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the “random” appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R(t) series of an Idling to Treadmilling state change, demonstrated behaviors concomitant with the observed transition

    Simplified automatic method for measuring the visual field using the perimeter ZERK 1

    Get PDF
    Background: Currently available perimeters have limited capabilities of performing measurements of the visual field in children. In addition, they do not allow for fully automatic measurement even in adults. The patient in each case (in any type of perimeter) has at his disposal a button which he uses to indicate that he has seen a light stimulus. Such restrictions have been offset in the presented new perimeter ZERK 1. Methods: The paper describes a new type of automated, computerized perimeter designed to test the visual field in children and adults. The new perimeter and proprietary software enable to carry out tests automatically (without the need to press any button). The presented full version of the perimeter has been tested on a head phantom. The next steps will involve clinical trials and a comparison with measurements obtained using other types of perimeters. Results: The perimeter ZERK 1 enables automatic measurement of the visual field in two axes (with a span of 870 mm and a depth of 525 mm) with an accuracy of not less than 1o (95 LEDs on each arm) at a typical position of the patient's head. The measurement can be carried out in two modes: default/typical (lasting about 1 min), and accurate (lasting about 10 min). Compared with available and known types of perimeters, it has an open canopy, proprietary software and cameras tracking the eye movement, automatic control of fixation points, light stimuli with automatically preset light stimulus intensity in the following ranges: 550-700 mcd (red 620-630 nm), 1100-1400 mcd (green 515-530 nm), 200-400 mcd (blue 465-475 nm). Conclusions: The paper presents a new approach to the construction of perimeters based on automatic tracking of the eye movements in response to stimuli. The unique construction of the perimeter and the software allow for its mobile use in the examination of children and bedridden patients

    Targeting cell cycle and hormone receptor pathways in cancer

    Get PDF
    The cyclin/cyclin-dependent kinase (CDK)/retinoblastoma (RB)-axis is a critical modulator of cell cycle entry and is aberrant in many human cancers. New nodes of therapeutic intervention are needed that can delay or combat the onset of malignancies. The antitumor properties and mechanistic functions of PD-0332991 (PD; a potent and selective CDK4/6 inhibitor) were investigated using human prostate cancer (PCa) models and primary tumors. PD significantly impaired the capacity of PCa cells to proliferate by promoting a robust G1-arrest. Accordingly, key regulators of the G1-S cell cycle transition were modulated including G1 cyclins D, E and A. Subsequent investigation demonstrated the ability of PD to function in the presence of existing hormone-based regimens and to cooperate with ionizing radiation to further suppress cellular growth. Importantly, it was determined that PD is a critical mediator of PD action. The anti-proliferative impact of CDK4/6 inhibition was revealed through reduced proliferation and delayed growth using PCa cell xenografts. Finally, first-in-field effects of PD on proliferation were observed in primary human prostatectomy tumor tissue explants. This study shows that selective CDK4/6 inhibition, using PD either as a single-agent or in combination, hinders key proliferative pathways necessary for disease progression and that RB status is a critical prognostic determinant for therapeutic efficacy. Combined, these pre-clinical findings identify selective targeting of CDK4/6 as a bona fide therapeutic target in both early stage and advanced PCa and underscore the benefit of personalized medicine to enhance treatment response.C E S Comstock, M A Augello, J F Goodwin, R de Leeuw, M J Schiewer, W F Ostrander Jr, R A Burkhart, A K McClendon, P A McCue, E J Trabulsi, C D Lallas, L G Gomella, M M Centenera, J R Brody, L M Butler, W D Tilley and K E Knudse
    corecore