341 research outputs found

    Strata-bound vein array in the basal Pierre Shale, Lake Francis Case, South Dakota, U.S.A

    Get PDF
    A distinctive strata-bound vein array occurs in the basal Pierre Shale exposed along the shores of Lake Francis Case, a reservoir on the Missouri River in south-central South Dakota. Typically 2–4 meters in thickness, the array consistently outcrops over a \u3e50-km distance, a significant areal footprint. Ash layers define the upper and lower bounds of the vein array. Two, suborthogonal, preferred directions of vertical veins (northeast and southeast strike) define a regional pattern. By volume, vertical veins comprise 1–2% of the rock. Thinner, more discontinuous, and irregular horizontal veins also occur. Comparisons between array orientations and the joint/vein pattern in the immediately underlying marls of the top of the Niobrara Chalk identify distinct differences. Traverse data suggest that the vein arrays are characterized by uniform horizontal extension. Vertical veins in the array are typically 1–2 centimeters thick and contain massive jarosite, selenite, and fibrous gypsum. The abundance of jarosite and fibrous gypsum distinctly correlates with position in the weathering profile, and these phases are interpreted as due to replacement of original selenite during modern weathering. However, for initial vein array formation, the following suggests that they are not related to modern weathering and formed at depth: (1) a lack of correlation of vein width/frequency with position in the weathering profile; (2) the regional extent; (3) the consistent preferred orientations; (4) the uniform horizontal extension; and (5) the coarse-grained character of the selenite. The consistent strike pattern suggests influence of a regional stress field. The mechanism/timing of vein array formation is unclear. Formation due to diagenetic processes, which are especially significant in mud rocks, would explain the strata-bound character and isotropic horizontal strain and is considered most likely. Formation during glacial loading is one intriguing possibility. Localization of the vein array may be due to the organic-rich character of the host Burning Brule Member of the Sharon Springs Formation

    Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid

    Get PDF
    Wounding of plants leads to endogenous rise of jasmonic acid (JA) accompanied with the expression of a distinct set of genes. Among them are those coding for the allene oxide cyclase (AOC) that catalyses a regulatory step in JA biosynthesis, and for 1-deoxy-D-xylulose 5-phosphate synthase 2 (DXS2), an enzyme involved in isoprenoid biosynthesis. To address the question how roots and shoots of Medicago truncatula respond to mechanostimulation and wounding, M. truncatula plants were analysed in respect to JA levels as well as MtAOC1 and MtDXS2-1 transcript accumulation. Harvest-caused mechanostimulation resulted in a strong, but transient increase in JA level in roots and shoots followed by a transient increase in MtAOC1 transcript accumulation. Additional wounding of either shoots or roots led to further increased JA and MtAOC1 transcript levels in shoots, but not in roots. In situ hybridization revealed a cell-specific transcript accumulation of MtAOC1 after mechanostimulation in companion cells of the vascular tissue of the stem. AOC protein, however, was found to occur constitutively in vascular bundles. Further, transcript accumulation of MtDXS2-1 was similar to that of MtAOC1 in shoots, but its transcript levels were not enhanced in roots. Repeated touching of shoots increased MtAOC1 transcript levels and led to significantly shorter shoots and increased biomass. In conclusion, M. truncatula plants respond very sensitively to mechanostimulation with enhanced JA levels and altered transcript accumulation, which might contribute to the altered phenotype after repeated touching of plants

    Statistical Study of Mercury’s Energetic Electron Events as Observed by the Gamma‐Ray and Neutron Spectrometer Instrument Onboard MESSENGER

    Full text link
    We present results from a statistical analysis of Mercury’s energetic electron (EE) events as observed by the gamma‐ray and neutron spectrometer instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The main objective of this study is to investigate possible anisotropic behavior of EE events using multiple data sets from MESSENGER instruments. We study the data from the neutron spectrometer (NS) and the gamma‐ray spectrometer anticoincidence shield (ACS) because they use the same type of borated plastic scintillator and, hence, they have very similar response functions, and their large surface areas make them more sensitive to low‐intensity EE events than MESSENGER’s particle instrumentation. The combined analysis of NS and ACS data reveals two different classes of energetic electrons: “Standard” events and “ACS‐enhanced” events. Standard events, which comprise over 90% of all events, have signal sizes that are the same in both the ACS and NS. They are likely gyrating particles about Mercury’s magnetic field following a 90° pitch angle distribution and are located in well‐defined latitude and altitude regions within Mercury’s magnetosphere. ACS‐enhanced events, which comprise less than 10% of all events, have signal sizes in the ACS that are 10 to 100 times larger than those observed by the NS. They follow a beam‐like distribution and are observed both inside and outside Mercury’s magnetosphere with a wider range of latitudes and altitudes than Standard events. The difference between the Standard and ACS‐enhanced event characteristics suggests distinct underyling acceleration mechanisms.Key PointsA comprehensive survey of energetic electron (EE) events observed with the neutron spectrometer (NS) and the gamma‐ray spectrometer anticoincidence shield (ACS) is conductedThe majority of EE events detected in the NS are also detected in the ACS and appear to be composed of gyrating, drifting electronsACS‐only and ACS‐enhanced events exhibit a significantly different spatial and temporal characteristics compared with the other EE event classesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145319/1/jgra54299_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145319/2/jgra54299.pd

    The advanced LIGO input optics

    Get PDF
    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design

    The Advanced LIGO Input Optics

    Get PDF
    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design

    Insect oral secretions suppress wound-induced responses in Arabidopsis

    Get PDF
    The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    • 

    corecore