19 research outputs found

    A statistical model to describe invariants extracted from a 3-D quadric surface patch and its applications in region-based recognition

    Get PDF
    A statistical model, describing noise-disturbed invariants extracted from a surface patch of a range image, has been developed and applied to region based pose estimation and classification of 3D quadrics. The Mahalanobis distance, which yields the same results as a Baysian classifier, is used for the classification of the surface patches. The results, compared with the Euclidean distance, appear to be much more reliabl

    Recognition of electronic scrap for recycling

    Get PDF

    A system for the automatic selection of sensors

    Get PDF

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)

    Parametric descriptions and estimation, a synergetic approach to resolving shape from shading and motion

    Get PDF
    Presents a method combining shape, shading and motion models in order to obtain estimations of 3D shape and motion parameters directly from image grey values. The problem is considered as an application of optimal parameter estimation theory, according to Liebelt (1967

    A study on backpropagation networks for parameter estimation from grey-scale images

    Get PDF
    A large number of experiments have been done on the basic research of parameter estimation from images with neural networks. To obtain a better estimation accuracy of parameters and to decrease needed storage space and computation time, the architecture of networks, the effective learning rate and momentum, and the selection of training set are investigated. A comparison of network performance to that of the least squares estimator is made. The internal representations in trained networks, i.e. input-to-hidden weight maps or measuring models, which include statistical features of training images and have a clear physical and geometrical meaning, and the internal components of output parameters given by outputs of hidden neurons are presente

    A new approach to practical training equipment for measurement

    No full text
    Students need be well trained in performing correct measurements. This paper reports on a training program in which emphasis is put on a critical attitude with respect to the whole measurement process. A meticulous analysis of the measurement environment, the measurement devices and the signal processing are prerequisites for an unambiguous interpretation of the measurement results. These skill are trained using a complete system built up in modules that can be studied separately. Error analysis is part of the training program and is performed on a real measurement
    corecore