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INTRODUCTION

This paper presents a method combining shape, shading
and motion models in order to obtain estimations of 3D
shape and motion parameters directly from image grey
values. The problem is considered -as an application of
optimal parameter estimation theory, according to Liebelt
(8). This theory has been applied previously, where the
emphasis was laid on time—delay, Burkhardt (2), and
motion estimation, Diehl (3), Houkes (5), Stuller (9). It
is applied here to provide an environment in which
somewhat more complicated models can be designed with
relative ease and to indicate how the behaviour of the
parameters can be investigated. A shading model is
added, offering explicit prediction of image grey values.
We consider sequences of images, although in a similar
way a stereo configuration could have been incorporated.
The resulting non—linear estimation problem is linearized
around a last parameter guess (8), so that a linear
estimator can be applied to compute a new estimate.
The various stages of the modeling process are separated
by introducing ~several coordinate systems. Coordinate
transformations will show the object from other points of
view, and perform an orthographic projection of the 3D
scene into the 2D image plane. The explicit grey value
prediction yields a template, having a definite extent in
the image. This method requires no gradient images, as
in the case of estimating shape from motion %6) or
stereo (5). The gradients can be computed analytically.
To demonstrate the usefulness and the flexibility of our
method, we consider a solid cylinder, irradiated with
X-rays. The image is a shadow image originating from
the absorption of radiation by the cylinder.

PARAMETER ESTIMATION

Linearization

Estimation theory is concerned with the optimal
estimation of a vector of parameters @ from a vector of
measurements @, related by

0= §a) m

Linearization of relation (1) offers a systematic way to
obtain a solution, independent of the specific form of (1),
so that afterwards a model can be put in. In accordance
with Liebelt (8) the following quantities are introduced:

50 = Ka) — a)

ba = a - a
60!0:{‘
B = ~ 2
*lo=a @
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Here aAis the last estimate of the parameter vector a,
and &a) is the lst order approximation of &a). The
matrix B is the Jacobian of the measurements # with

respect to the parameters. With these definitions from
(1) a linearized matrix equation

. ) 60 = Béa + n 3)
is obtained, where n is a noisy term taking into account

additive measurement noise and the fact, that the higher
order terms in the Taylor series expansion are ignored.
Equation (3) is the linear form for the observations in a
linear parameter estimation problem (8).

Optimal estimation of the parameter vector. The least

squares estimator for fa is:

sa = (BTB) !B 50 (4)

and Liebelt (8) discusses the conditions under which this
estimator is unbiased. We assume that these conditions
are met. An implementation can be performed according
to the scheme of fig. 1. Equation (4) is used to update
the parameter vector which is used again in the models
to compute a new prediction of the image grey values.
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Figure 1 Scheme for the linearized estimator

Estimation theory and shape from shadin

The shape from shading problem fits the framework of
parameter estimation naturally, if the image grey values
are chosen as the measurements from wlgﬂch the body
parameters have to be estimated. However, the grey
values depend also on properties of the camera system
and the radiation source, irradiating the object, which
will  yield additional parameters. Some of these
parameters may be a priori known, others have to be
estimated together with the body parameters. The
models, required to obtain a prediction of the image grey
values, are discussed in detail in the next section. An
implementation of an estimation algorithm can be
deduced directly from fig. 1, where in this case the
measurement vector # is composed of a set of grey
values belonging to different grey positions Vj:

Ka) = [(Vza)(Vza),....]T (5)

Processing _sequences _of images. To estimate shape from

image sequences, the model in fig. 1 is extended with a
body motion model. This model, used in fig. 2, produces

the predicted images #; at time tpand @, at time
to=t;+At. The differences 60, and 60, of these images
with the real world images, are put together in a new
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Figure 2 shape and motion estimation
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measurement vector 8§, which again is used in the
estimator (4) to perform estimates of the parameter
vector, extended with the motion parameters.

SHAPE, SHADING AND MOTION MODELS
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In this section we address the design of the various
models used. To obtain information from the image(s), a
priori knowledge about the scene is necessary, which is
brought into the algorithm with the help of parametric
models. With these models grey values are predicted.
Several coordinate systems will be introduced to make
the modeling transparent and modular.

Coordinate systems

The design of the various models is simplified by the use
of several coordinate systems. The cylinder is described
in a suitably chosen system of body coordinates
(X1,X2,X3). The camera can be described conveniently in
the camera coordinates (Ul,Ug,U;?. The image plane is
chosen to be the ground plane of the coordinate system,
Us = 0. The position and orientation of the body with
respect to the camera appears in the transformation
between body and camera coordinates, consisting of
successive rotations around the X; X, and Xy-axes, a
translation along a certain vector and a transformation
according to Ballard and Brown (1) defined by:

U1=—f§;— Un=—f§§‘ Ua=—fg(& (6)

where f is the perpendicular distance from the radiation
source to the image plane. In (6) a projection can be
recognized. A 2D image coordinate system (V,V2) is
related to the camera coordinates by:

V, = U, Vy, = Uy (7
which is simply an orthographic projection. The loss of
information lies in the fact, that from the image only U,
en U, can be determined and not Us.

Homogeneous coordinates. To achieve compact notations,
homogeneous body coordinates (x1,X2,X3,%4) Wwith x4=1,
and camera coordinates (upuzusug) are introduced,
analogous to Duda and Hart (4). In common with
robotics, the transformations between the coordinate
systems are conveniently described by

u = Mx (8)
The matrix M can be written as a product of matrices

describing rotations, a translation and a projection
respectively as in:
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with:
the projection matrix,
Ly matrices describing translations over
L, distances l; and [, respectively,
¥ matrices describingrotations ¢, ¢ and
? 4 around the X, X3, and X3 axes
respectively.

Description of the cylinder

Shape of the cylinder. The body coordinates are chosen
such that the symmetry axis of the cylinder coincides
with the x,axis. This simplifies the description of the
cylinder considerably. The cylinder has a diameter d,
therefore the set of points in space being part of the
cylinder obeys the relation

x? + xs? ¢ (Yad)? (10)

and the range of values for x; is only constrained by
the chosen region of interest (ROI) in the image.
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Figure 3 The cylinder in a body coordinate system

Position and orientation of the cylinder. In order to
obtain a description of the body from the camera point
of view, (10) must be transformed to camera coordinates
according to transformation (9). The significance of the
parameters contained in the translation matrices Ly, Lz
and the rotation matrices I', ¥ and ¢, is illustrated in

fig. 3.

Tie direction of the translation [ is along the vector
connecting the centre of the image window and the
radiation source (fig. 3). In many cases this centre will
be the perpendicular projection of the radiation source in
the image plane in which case the translation direction is
the U; axis. Therefore the parameter Iy can be
considered to be a depth parameter.

Interaction of the cylinder with X-rays. To be able to
predict image grey values, the interaction between the
X—-r1ay radiation and the cylinder must be known. The
absorption and scattering of X-rays diminishes the
intensity of the original X-ray according to the
well-known Lambert—Beer law:

E(A) = Egexp(—Ag) (11)
Here A is the distance traversed by the X-ray through

the cylinder, Bo is the intensity of the entering X-ray
radiation and p is the attenuation coefficient of the



medium. E(A) will determine the image grey values. Its
dependence on the cylinder parameters is found by
computing A as a function of its parameters. Suppose an
X-ray crosses the X Xpplane at a location

x=(x,x,0,1)", with direction ¥=(y1,¥2,¥3,0)" expressed in
body coordinates. The total trajectory A of the ray
through the cylinder is found from (10):

fd’& 2 li 25_45E 2.2
A= el V|

. Y12+{a2
if the argument of the root is > 0
= 0 elsewhere (12)

with ||lyl| the length of the vector y.

The intensity E(A) is known now as a function of Eo,
d, the position x where it crosses the X Xz—plane and
the vector y. This vector will be computed later on (23).

Motion of the cylinder. We confine ourselves to rigid
body motion which means that all the body points
perform the same motion, described as a combination of
a translation and a rotation. We assume the shape
description to apply at time t,. If the point x’ at time
to=t;+At corresponds to a point x at time t; we have
(small rotation appto:cimations):O

x’ = Dx (13)
1 —R; R; AX;
D=|Rs 1 —RyAXy (14)

-R2 R; 1 AXs
0 0 1

with R = (R],R2,R3)T the rotation vector,
AX = (Axl,AXZ,AXB)T the translation vector.

A _different view on motion. The simple description of
the body can be preserved if the motion description (13)
is regarded as a coordinate transformation, yielding new
body coordinates. The motion will be reflected by the
fact that the transformation between camera coordinates
and body coordinates after motion is not given by (8)
but by:

u = MDx’ (15)

where x' = (x,’,x;',x;’,x,;’)T are now the new body
coordinates. In these new coordinates the cylinder is
described after the motion by (10). Apart from the
projection, both matrices M and D are composed in an
analogous way. Therefore the rotation and translation
parameters play the same role with respect to the second
image as the orientation and position parameters with
respect to the first image. The imaging process does not
change due to this different view; however, using a
second coordinate transformation to describe motion
makes the incorporation of motion in the imaging model
extremely simple, as we will see below.

Prediction of image grey values

We compute the grey value I(v;a) as a function of the
parameter vector a and the image position v as in (17).
First we examine which position x at the cylinder plane
is projected onto the image position v. Subsequently the
grey value in v is related to the intensity of the
radiation emanating from the cylinder at position x.

First stage, the imaging geometry. To find the position
of a body point x as a function of the corresponding

image coordinate v, the relation (9) is inverted. Therefore

x=Mh (16)

where Ml is the inverse of (9). The transformation
from camera to image coordinates is not invertible
without the use of a priori knowledge. From Korsten (7)
we have

x = Ml(uw + fe5) an
with
v = (ViVoi)T
and e;= a homogeneous unity vector

The expression (17) still contains the unkmown uy,
reflecting the fact that wu is not determined
unambiguously as a function of the image coordinates.
The constraint x3;=0 is employed to compute us, leading
to:

X3 = eix = e?M_I(\uv + fes) = 0 (18)
T, ,—1

Therefore: uy = —fe’M_ €3 (19)
exM v

Putting (19) in (17) yields the body position x as a
function of the image position v:

Ty—1
—1 esM “eg
x = fM “{e; — T ) {20)
[ ? (egM_ v) ]

where e'gM_lea is the (3,3) element of the matrix ML

Second stage, the image Ie values. From the
interaction Eetween the cylinder and the X-rays at
location x, the image grey value I(v;a) has to be
predicted. The conversion to image grey values is rather
complicated; however, the total conversion process is
supposed to be linear, therefore we still have an
exponential Lambert—Beer relation for the grey values

I(via) = Loexp{—uA(x)} (2i)
where:

~ x is according to (20)

— Ip 1is the grey value if no attenuation of the radiation
inside the cylinder has taken place.

It remains to find an expression for the vector y

appearing in (12) indicating the direction of the entering

radiation at the cylinder. The vector

¥ = Guyays0)T (22)

is determined by the position of the X-ray source with
respect to the position of the body point x. In camera
coordinates the radiation source has the position fe;, and

transformed to body coordinates fM_le;. In body
coordinates y is

y= Mle - x
T, ~1

= f2aM eyl (23)
e;,M v

Sequences of images. To obtain explicit grey value
predictions, let the two images be registered at time t,

and ty=t;+At respectively. We suppose the shape model
to describe the shape of the body at time t,, then the
problem of obtaining a grey value prediction Ij(v;a) at t;
has been solved above. A prediction of the grey values
Iy(v,a) at time tz; as has been pointed out previously, is
obtained with the transformation (15) between camera
and new body coordinates. So we can immediately write
down the position x’ and the direction vector y’ after
the motion analogous to (20) and (23):



x = f(MD)! [e; - (e? MD :133)v] (24)
e;(MD) v
T —1
;= 3(MD) eg( D—l
y f:a,(MD)_ v Mp) v (@)

Due to this treatment, parameters of the motion model
will be added to the shape and the transformation
parameters.

From the combined models of shape and motion,
parameters can be estimated. The parameter vector of
the total model consists of the following fourteen
parameters: lo, 4, d, 1y, b % @ % OXy AXy AX,,
R;, Ry Ra

ROBUSTNESS AND ACCURACY OF THE RESULTS

The description of the behaviour with respect to
convergence of multi parameter systems s quite
complicated, because of the dependence on some
parameters. A parameter might be outside its range of
convergence because of the values of other parameters.
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Figure 4a First stage of the algorithm
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Figure 4b Second stage of the algorithm

This is a known problem considered for instance by
Diehl (3). Based on considerations by Korsten (72 with
respect to stability and identifiability, we decided to
divide the set of parameters into two groups, leading to
a two stage algorithm. In the first stage d, Iz, 7 and p
are estimated while I;=100 and =0 are kept fixed at
an initial estimate (fig. 4a). In the second stage ¢ and
1, are added to the set of parameters to be estimated,
starting from the final result of the first stage (fig. 4b).
The experiments were performed on model—generated
images without noise. The parameters, used to produce
these images were: =0, ¥=0.4 rad, 1,/f=0.06, f=8000p,
d=20p, l=10p, 7=0.3 rad, I1,=120, p=0.04, where p
stands for pixel.

Estimation of motion parameters

Motion influences the second image of the image pair in
a similar way as the position and orientation influence
the first image. See "a different view on motion". It

may be expected, therefore, that motion estimation from
the second image has properties resembling very closely
the properties of shape estimation from a single image. It
may not be expected that simultaneous estimation of
shape and motion parameters, using the model of fig. 2,
will improve the stability of the algorithm with respect
to individual parameters. Shape and orientation
parameters can only be estimated from the first image,
because of unknown motion. Motion parameters can only
be estimated from the second image.

The translation AX, along the cylinder axis X, and the
rotation R, around this axis are not identifiable (7),
therefore they are removed. To prevent ambiguities in
the motion parameters Ry R, AX; and X3, the
translation AX3;=30 p is taken fixed.

TABLE 1 Statistics of simultaneous shape, orientation

and motion _estimation.

S/N ratio: 11 S/N ratio: 3.7
Par Mean Sigma, Mean Sigma,
AX|-19.99 0.02 -19.95 0.12
Ry -0.10 0.02 -0.09 0.10
Rs 0.201 0.006 0.20 0.03
d 20.01 0.02 20.58 0.18
la 9.997 0.015 9.98 0.08
¥ 0.3001 0.0007 0.301 0.003
" 0.03993 0.00015 0.0380 0.0008

From the set of shape and orientation parameters
yielding stable estimation results d, 1z v, 4 are selected
corresponding to Korsten (7). The total set of parameters
is (d,ls,7mR1,R3,AX,). Table 1 presents some estimation
results from a pair of images, corrupted with noise. For
each signal to noise ratio 25 "two stage" experiments
were performed. During the first stage R=0 rad. and
R3=0 rad. were kept fixed. The initial estimate for d=30
p and for p=0.02, while all the others are zero. The
mean and the standard deviations of each parameter are
shown in table 1.

Duality. An experiment, with the grey value I
incorporated into the estimation, produced dual solutions
along with correct solutions. Again 25 two stage

TABLE 2 Statistics of simultaneous shape, orientation and
motion estimation.

S/N ratio: 11 S/N ratio: 11

18 measurements 7 measurements

correct solution dual solution
Par || Mean Sigma Mean Sigma
AX,|-20.00 0.02 -20.03 0.05
Ry -0.10 0.02 -0.66 0.02
R; 0.200 0.006 0.356 0.006
d 20.03 0.04 20.02 0.06
s 10.00 0.01 10.00 0.02
¥ 0.2997 0.0006 0.3004 0.0007
1o 120.7 0.9 122.4 1.7
n 0.0402 0.0004 0.0407 0.0006

experiments were performed, where in the first stage
[,=100, Ry=0 rad. and R;=0 rad. were kept fixed. The
mean and standard deviations of each parameter are
shown in table 2.

The dual solution is from Korsten (7) R,;=—0.574,
R;=0.296, AX,=—29.2 and AX;=—15.6. Because AX; was
fixed to 30 p during the experiment, the perfect dual
solution could not be reached. The influence of AX; on



the image is only slight, therefore even with AX;=30 p
there is a non perfect dual solution close to the perfect
dual solution. As can be seen by comparing tables 1 and
2 the duality does not affect the accuracy of the correct
solutions.

MMARY AND NCLUSION:

Shape, shading and motion of a solid cylinder were
systematically modeled. An algorithm was derived, which
combines these models to predict image grey values. The
predicted gref;; values, together with the corresponding
grey values from a real world image, are used in an
estimator based on successive linearization around the
actual estimate of the parameter vector, to improve the
estimate. Experiments, using artificial images instead of
real world images, were carried out. The obtained results
show that simultaneous shape and motion estimation is
conditionally possible, even if the "real world images" are
corrupted by noise. When dual solutions arise, the
accuracy of the correct solutions is not affected, because
of a slight influence of AX3 on the image.
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