83 research outputs found

    Subgrid-scale treatment for major point sources in an Eulerian model: A sensitivity study on the European Tracer Experiment (ETEX) and Chernobyl cases

    Get PDF
    International audienceWe investigate the plume-in-grid method for a subgrid-scale treatment of major point sources in the passive case. This method consists in an on-line coupling of a Gaussian pu model and an Eulerian model, which better represents the point emissions without signicantly increasing the computational burden. In this paper, the plume-in-grid model implemented on the Polyphemus air quality modeling system is described, with an emphasis on the parameterizations available for the Gaussian dispersion, and on the coupling with the Eulerian model. The study evaluates the model for passive tracers at continental scale with the ETEX experiment and the Chernobyl case. The aim is to (1) estimate the model sensitivity to the local-scale parameterizations, and (2) to bring insights on the spatial and temporal scales that are relevant in the use of a plume-in-grid model. It is found that the plume-in-grid treatment improves the vertical diusion at local-scale, thus reducing the bias -- especially at the closest stations. Doury's Gaussian parameterization and a column injection method give the best results. There is a strong sensitivity of the results to the injection time and the grid resolution. The "best" injection time actually depends on the resolution, but is difficult to determine a priori. The plume-in-grid method is also found to improve the results at ne resolutions more than with coarse grids, by compensating the Eulerian tendency to over-predict the concentrations at these resolutions

    Comparative Study of Gaussian Dispersion Formulas within the Polyphemus Platform: Evaluation with Prairie Grass and Kincaid Experiments

    Get PDF
    International audienceThis paper details a number of existing formulations used in Gaussian models in a clear and usable way, and provides a comparison within a single framework—the Gaussian plume and puff models of the air quality modeling system Polyphemus. The emphasis is made on the comparison between 1) the parameterizations to compute the standard deviations and 2) the plume rise schemes. The Gaussian formulas are first described and theoretically compared. Their evaluation is then ensured by comparison with the observations as well as with several well-known Gaussian and computational fluid dynamics model performances. The model results compare well to the other Gaussian models for two of the three parameterizations for standard deviations, Briggs's and similarity theory, while Doury's shows a tendency to underestimate the concentrations because of a large horizontal spread. The results with the Kincaid experiment point out the sensitivity to the plume rise scheme and the importance of an accurate modeling of the plume interactions with the inversion layer. Using three parameterizations for the standard deviations and the same number of plume rise schemes, the authors were able to highlight a large variability in the model outputs

    Development and application of a reactive plume-in-grid model: evaluation over Greater Paris

    Get PDF
    International audienceEmissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan ĂŽle-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations on measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Ozone is mostly sensitive to the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest

    Polyphemus : une plate-forme multimodèles pour la pollution atmosphérique et l'évaluation des risques

    Get PDF
    National audienceCet article présente le système de modélisation de la qualité de l'air Polyphemus, ses principales fonctionnalités et quelques applications. Polyphemus est dédié à la modélisation de la dispersion atmosphérique de traceurs passifs ou d'espèces réactives aux échelles locale, régionale et continentale. Polyphemus est développé au CEREA, laboratoire commun entre EDF R&D et lʼÉcole des Ponts et au sein dʼun projet commun avec lʼInstitut national de recherche en informatique et automatique (INRIA), avec le soutien de lʼIRSN et de lʼINERIS. Polyphemus est un système dʼun type nouveau qui se distingue de lʼapproche classique du " modèle tout en un " par sa construction modulaire, notamment fondée sur des bibliothèques et des pilotes manipulant les modèles de dispersion. Accueillant plusieurs modèles, Polyphemus est une plate-forme et non un modèle. Une de ses fonctionnalités notables est sa capacité à effectuer des simulations multimodèles, ce qui permet d'évaluer des incertitudes. Plusieurs méthodes dʼassimilation de données font aussi partie du système afin de pouvoir intégrer des données fournies par des réseaux de mesure

    Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign

    Get PDF
    Numerical atmospheric dispersion models (ADMs) are used for predicting the health and environmental consequences of nuclear accidents in order to anticipate countermeasures necessary to protect the populations. However, these simulations suffer from significant uncertainties, arising in particular from input data: weather conditions and source term. Meteorological ensembles are already used operationally to characterize uncertainties in weather predictions. Combined with dispersion models, these ensembles produce different scenarios of radionuclide dispersion, called “members”, representative of the variety of possible forecasts. In this study, the fine-scale operational weather ensemble AROME-EPS (Applications of Research to Operations at Mesoscale-Ensemble Prediction System) from Météo-France is coupled with the Gaussian puff model pX developed by the IRSN (French Institute for Radiation Protection and Nuclear Safety). The source term data are provided at 10 min resolution by the Orano La Hague reprocessing plant (RP) that regularly discharges 85Kr during the spent nuclear fuel reprocessing process. In addition, a continuous measurement campaign of 85Kr air concentration was recently conducted by the Laboratory of Radioecology in Cherbourg (LRC) of the IRSN, within 20 km of the RP in the North-Cotentin peninsula, and is used for model evaluation. This paper presents a probabilistic approach to study the meteorological uncertainties in dispersion simulations at local and medium distances (2–20 km). First, the quality of AROME-EPS forecasts is confirmed by comparison with observations from both Météo-France and the IRSN. Then, the probabilistic performance of the atmospheric dispersion simulations was evaluated by comparison to the 85Kr measurements carried out during a period of 2 months, using two probabilistic scores: relative operating characteristic (ROC) curves and Peirce skill score (PSS). The sensitivity of dispersion results to the method used for the calculation of atmospheric stability and associated Gaussian dispersion standard deviations is also discussed. A desirable feature for a model used in emergency response is the ability to correctly predict exceedance of a given value (for instance, a dose guide level). When using an ensemble of simulations, the “decision threshold” is the number of members predicting an event above which this event should be considered probable. In the case of the 16-member dispersion ensemble used here, the optimal decision threshold was found to be 3 members, above which the ensemble better predicts the observed peaks than the deterministic simulation. These results highlight the added value of ensemble forecasts compared to a single deterministic one and their potential interest in the decision process during crisis situations.</p

    Combining short-range dispersion simulations with fine-scale meteorological ensembles: probabilistic indicators and evaluation during a 85Kr field campaign

    Get PDF
    Numerical atmospheric dispersion models (ADMs) are used for predicting the health and environmental consequences of nuclear accidents in order to anticipate countermeasures necessary to protect the populations. However, these simulations suffer from significant uncertainties, arising in particular from input data: weather conditions and source term. Meteorological ensembles are already used operationally to characterize uncertainties in weather predictions. Combined with dispersion models, these ensembles produce different scenarios of radionuclide dispersion, called “members”, representative of the variety of possible forecasts. In this study, the fine-scale operational weather ensemble AROME-EPS (Applications of Research to Operations at Mesoscale-Ensemble Prediction System) from Météo-France is coupled with the Gaussian puff model pX developed by the IRSN (French Institute for Radiation Protection and Nuclear Safety). The source term data are provided at 10 min resolution by the Orano La Hague reprocessing plant (RP) that regularly discharges 85Kr during the spent nuclear fuel reprocessing process. In addition, a continuous measurement campaign of 85Kr air concentration was recently conducted by the Laboratory of Radioecology in Cherbourg (LRC) of the IRSN, within 20 km of the RP in the North-Cotentin peninsula, and is used for model evaluation. This paper presents a probabilistic approach to study the meteorological uncertainties in dispersion simulations at local and medium distances (2–20 km). First, the quality of AROME-EPS forecasts is confirmed by comparison with observations from both Météo-France and the IRSN. Then, the probabilistic performance of the atmospheric dispersion simulations was evaluated by comparison to the 85Kr measurements carried out during a period of 2 months, using two probabilistic scores: relative operating characteristic (ROC) curves and Peirce skill score (PSS). The sensitivity of dispersion results to the method used for the calculation of atmospheric stability and associated Gaussian dispersion standard deviations is also discussed. A desirable feature for a model used in emergency response is the ability to correctly predict exceedance of a given value (for instance, a dose guide level). When using an ensemble of simulations, the “decision threshold” is the number of members predicting an event above which this event should be considered probable. In the case of the 16-member dispersion ensemble used here, the optimal decision threshold was found to be 3 members, above which the ensemble better predicts the observed peaks than the deterministic simulation. These results highlight the added value of ensemble forecasts compared to a single deterministic one and their potential interest in the decision process during crisis situations.</p

    Assessment of the detection abilities of monitoring networks for passive tracers at local and regional scales

    Get PDF
    International audienceWe propose a method to evaluate the detection abilities of networks used for protection purposes. Such networks are designed for the detection of nuclear, biological or gaseous emissions, without constraint on the source location. Their assigned goal is to have the best chance to detect a threatening emission located anywhere in the vicinity of a domain to protect. Two sensors siting applications are addressed: sensors placed in the surroundings of a facility to protect, or sensors carried by people scattered within a small area. A network protection ability is related both to its detection scope, and to its response time. To assess the performance of such networks, two statistical indicators are therefore designed: the detection probability, computed on a large number of possible source locations, and the saturation time, which is the time when the maximum detection probability has been reached. Simulations are then carried out with the Polyphemus air quality modeling system for many emission scenarios, including 961 possible source locations, various emitted species, and a few representative meteorological situations. This allows to assess the performance of single sensors as well as full networks, and their sensitivity to parameters like meteorological conditions and source characteristics. The emitted quantity and meteorological dispersion are found to be important parameters, whereas the species type does not significantly influence the results. Two network design methods are considered: (1) networks composed of a given number of the “best” sensors according to an indicator, and (2) sensors placed in circles around the protected domain. The networks built with respect to the detection probability show good results with a limited number of sensors, while the saturation time is not reliable enough to build networks. The networks based on circles also show a good performance in the studied cases, provided there is a sufficient number of sensors

    CONFIDENCE: achievements and way forward

    Get PDF
    The project CONFIDENCE (COping with uNcertainties For Improved modelling and DEcision making in Nuclear emergenCiEs) final dissemination event attracted 88 participants to review and discuss the project results and provide ideas for future research work. The workshop highlighted progress in understanding uncertainties in all phases of an emergency. It was also demonstrated that consideration of uncertainties are important when developing countermeasure strategies. Stakeholder engagement as well as societal and ethical aspects in decision making have to be considered. Formal decision making tools were improved and tested. In addition, CONFIDENCE participants, representatives of international organisations and end users, provided their ideas on research needs and the way forward

    Technical Note: The air quality modeling system Polyphemus

    Get PDF
    International audiencePolyphemus is an air quality modeling platform which aims at covering the scope and the abilities of modern air quality systems. It deals with applications from local scale to continental scale, using two Gaussian models and two Eulerian models. It manages passive tracers, radioactive decay, photochemistry and aerosol dynamics. The structure of the system includes four independent levels with data management, physical parameterizations, numerical solvers and high-level methods such as data assimilation. This enables sensitivity and uncertainty analysis, primarily through multimodel approaches. On top of the models, drivers implement advanced methods such as model coupling or data assimilation
    • …
    corecore