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ABSTRACT

This paper details a number of existing formulations used in Gaussian models in a clear

and usable way, and provides a comparison within a single framework—the Gaussian plume

and puff models of the air quality modeling system Polyphemus. The emphasis is made

on the comparison between (1) the parameterizations to compute the standard deviations

and (2) the plume rise schemes. The Gaussian formulae are first described and theoretically

compared. Their evaluation is then ensured by comparison to the observations as well as

to several well-known Gaussian and CFD models performance. The model results compare

well with the other Gaussian models for two of the three parameterizations for standard

deviations, Briggs’s and similarity-theory, while Doury’s shows a tendency to underestimate

the concentrations because of a large horizontal spread. The results with Kincaid experiment

point out the sensitivity to the plume rise scheme and the importance of an accurate modeling

of the plume interactions with the inversion layer. Using three parameterizations for the

standard deviations and the same number of plume rise schemes, we were able to highlight

a large variability in the model outputs.

1. Introduction

Gaussian models are widely used to model dispersion at local scale, in spite of their well-

known limits, since they are based on simple analytical formulae, and computationally cheap

to use. However, the use of empirical schemes to compute the Gaussian standard deviations

involves large uncertainties—hence many different formulations exist. When plume rise oc-

curs, additional parameterizations are introduced, which results in still more variability. In
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this paper, the Gaussian models developed on the Polyphemus platform (Mallet et al. 2007)

are used to evaluate the results sensitivity to the physical parameterizations for standard de-

viations and plume rise. This evaluation is ensured by means of theoretical study, comparison

to experimental data, and comparison to other well-known Gaussian models performance,

like US EPA models ISCST3 and AERMOD, and UK’s widely used Gaussian model ADMS.

Since Polyphemus is not a single air quality model but a platform aimed at handling different

models, it provides an appropriate framework to benchmark parameterizations and features

of Gaussian models, thus evaluating the spread in model outputs. In addition, one of the

aims of this paper is also to put together a number of different parameterizations that were

previously described in many different contexts, in a clear and usable way, which also makes

comparisons easier.

We first present the Polyphemus Gaussian models in Section 2, with an emphasis on

the parameterizations for standard deviations and plume rise. A first comparison of the

parameterizations is given in Section 3. Then, the model evaluation is carried out with

Prairie Grass (Section 4) and Kincaid (Section 5) field-experiments datasets.

2. Description of the Polyphemus Gaussian models

a. The Gaussian plume and puff models

Polyphemus hosts both a Gaussian plume model and a Gaussian puff model. Arya (1999)

reviews the main assumptions for the relevance of the two models. A Gaussian plume model

assumes a Gaussian distribution of mean concentration in the horizontal (crosswind) and
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vertical directions, in steady-state and homogeneous meteorological conditions. The disper-

sion in the downwind direction is supposed to be negligible compared to the transport by

the mean wind in the plume model. A Gaussian puff model discretizes the plume into a

series of puffs, each of them having a Gaussian shape in all three directions. The puff model

can also take into account different meteorological data for each puff, therefore allowing a

more accurate simulation of non-stationary and non-homogeneous conditions. In Polyphe-

mus, the plume and puff models share the same parameterizations. Thus, in stationary and

homogeneous conditions—as assumed in the Prairie Grass and Kincaid experiments—the

Gaussian puff model gives the same solution as the Gaussian plume model, if averaged over

a long enough period. Henceforth, only the Gaussian plume model is therefore used (it was

verified that the Gaussian puff model gave the same results).

For a stationary plume, the concentration C is given by the Gaussian plume formula:

C(x, y, z) =
Q

2πσyσzū
exp

(

− (y − ys)
2

2σ2
y

)

×
[

exp(−(z − zp)
2

2σ2
z

) + exp(−(z + zp)
2

2σ2
z

)
]

. (1)

Q is the source emission rate, given in mass per second, ū is the mean wind velocity, and

σy and σz are the Gaussian plume standard deviations in the horizontal (crosswind) and

vertical directions. The coordinate y refers to the crosswind horizontal direction, and ys is

the source coordinate in that direction. The coordinate z refers to the vertical coordinate

and zp is the plume height above ground—sum of the source height and the plume rise

(see Section c). The second term of the last factor represents the ground reflection; similarly,

additional terms can take into account the reflections on the elevated inversion layer. Also,

when the plume is mixed enough in the boundary layer (σz > 1.5 zi), the formula is modified

to consider that the plume is vertically homogeneous. In addition, other factors can be
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applied to this formula in order to take loss processes into account, such as dry deposition,

scavenging, radioactive or biological decay. In Polyphemus, full gaseous chemistry may also

be handled by the Gaussian puff model.

b. Dispersion parameterization schemes

The expression of the total plume standard deviation is the sum of the spread due to

turbulence (σyturb , σzturb), the additional spread due to plume rise (σypr , σzpr), and the initial

spread due to the diameter ds of the source:

σ2
y = σ2

yturb
+ σ2

ypr + d2s/4, σ2
z = σ2

zturb
+ σ2

zpr (2)

For the sake of clarity, σyturb and σzturb are named in this section σy and σz. These standard

deviations are estimated through empirical schemes, as functions of the downwind distance

to the source and the stability, based on a few dispersion field experiments. Here, three

parameterizations are described. Two of them are based on a discrete description of the

atmospheric boundary layer: the Briggs formulae and the Doury formulae. The third one is

based on similarity theory, and involves parameters such as the wind velocity fluctuations,

the Monin-Obukhov length, the mixing height and the friction velocity.

1) Briggs’s formulae

The Briggs formulae are based on the Pasquill-Turner stability classes (Turner 1969) and

fitted on the Prairie Grass experiment. This parameterization is born from an attempt to

synthesize several widely used schemes by interpolating them for open country and for urban
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areas, for which they are particularly recommended. The full formulae can be found in Arya

(1999) for instance. The general form is given by:

σy =
α x√
1 + β x

, σz = α x (1 + β x)γ, (3)

with x the downwind distance from source, and α, β and γ coefficients depending on Pasquill

stability class. There are six stability classes corresponding to different states of the atmo-

sphere (Pasquill 1961), from A (extremely unstable) to F (stable).

2) Doury’s formulae

An alternative parameterization is described in Doury (1976). This parameterization has

been developed for the specific application of radionuclide dispersion, and fitted on a wider

experimental field than the Prairie Grass field. The formulae use only two stability situations,

corresponding to “normal” and “low” dispersion, determined by the vertical temperature

gradient. By default, it is assumed that low dispersion occurs during nighttime with low

wind speed (u ≤ 3m s−1). The standard deviations are given in both cases in the general

form:

σy = (Aht)
Kh , σz = (Azt)

Kz , (4)

where t is the transfer time since release time. In the case of a steady-state plume, t = x/u,

where x is the distance from the source and u is the wind speed. The formulae for the normal

situation can be found in Demaël and Carissimo (2008).

5



3) Similarity theory

If enough meteorological data is available, σy and σz can be estimated using the standard

deviations of wind velocity fluctuations in crosswind horizontal direction σv and in vertical

direction σw. Following Irwin (1979), dispersion coefficients are investigated in the form:

σy = σv t Fy, σz = σw t Fz, (5)

where t is the time in seconds, and Fy and Fz are functions of a set of parameters that specify

the characteristics of the atmospheric boundary layer. These functions are determined from

experimental data. Various expressions of Fy and Fz have been proposed (e.g., Irwin (1979),

Weil (1988)). Appendix 7 details the formulations used in Polyphemus for Fy, Fz, σv and

σw. A modified formulation from Hanna and Paine (1989) is also available for the case of

elevated sources (above 100m height). Two different formulations are also given for the

standard deviations above the boundary layer.

c. Plume rise schemes

When emissions are hotter than the ambient air, or have a significant ejection speed,

the plume generally reaches a certain height before behaving like the surrounding air: this

difference in heights can be significant (up to a few hundreds of meters) and is called “plume

rise” (see Figure 1). Estimates of the plume rise can be provided, based on the source initial

height, diameter, ejection temperature and ejection velocity. In all formulae described below,

it is assumed that the plume instantaneously reaches its final height at the emission time,

then travels downwind. More accurate formulations allow to determine the plume rise as a
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function of the downwind distance, but are not investigated here.

If the plume rise is ∆h, the plume final height is given by zp = zs + ∆h, with zs the

source height. The initial spread due to plume rise is added to the total standard deviations

at the emission time according to Equation 2. It is estimated following Irwin (1979) for the

crosswind spread and Hanna and Paine (1989) for the vertical spread:

σypr = ∆h/3.5, σzpr = ∆h/2. (6)

Three different formulae to compute plume rise are described in this section. While the

Briggs-HPDM formulae depend on the stability of the atmosphere, the two other formulae

depend only on the source dynamics and buoyancy and are based on the source heat rate.

1) Briggs-HPDM plume rise

The plume rise computation is based on the Briggs formulae—detailed in Seinfeld and

Pandis (1998)—assuming a buoyancy-driven plume rise (Equations 8 to 12) . In the formulae,

∆h is the plume rise, u is the wind velocity, w∗ is the convective velocity and u∗ is the friction

velocity. In addition, sp is the Briggs static stability parameter and Fb is the initial buoyancy

flux parameter. They are defined as:

sp =
gdθ/dz

T
, Fb = g vs d

2
s

Ts − T

Ts

(7)

with g the gravity acceleration, dθ/dz the vertical gradient of potential temperature, T the

ambient temperature, vs the vertical velocity of the emission, ds the source diameter and Ts

the source temperature.
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(i) Stable cases

The formulae for stable cases come from Seinfeld and Pandis (1998) and are also used in

the HPDM model (Hanna and Paine 1989) . The final plume rise is ∆h = min(∆h1,∆h2).

∆h1 = 2.6
(

Fb

u sp

)1/3

, ∆h2 = 4 F
1/4
b s−3/8

p . (8)

(ii) Unstable and neutral cases

The following formulae come from Seinfeld and Pandis (1998) and are originally from

Briggs.

∆h = 21.4
F

3/4
b

u
if Fb < 55 (9)

∆h = 38.71
F

3/5
b

u
if Fb ≥ 55 (10)

In the above formulae, ambient turbulence is supposed to be negligible, compared to the

plume internal turbulence. However, in many unstable and neutral cases, the plume even-

tually reaches a point where ambient turbulence is large enough to stop the plume vertical

progress. In Briggs (1971), this so-called “breakup” height is determined as the point where

both the plume and the ambient eddy dissipation rates are equal. It is reported in Hanna

(1984) and used here for neutral cases, whereas the unstable breakup formula comes from

Hanna and Paine (1989). When there is the choice between a breakup formula and a Briggs

formula, the one giving the minimal plume rise is chosen.

∆h = 4.3
(

Fb

u w2
∗

)3/5

z
2/5
i unstable (11)

∆h = 1.54
(

Fb

u u2
∗

)2/3

z
1/3
s neutral (12)
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2) Holland formula

This plume rise formula is the same for all stabilities. It comes originally from Holland

(1953) and was modified by Stümke (1963).

∆h = 1.5
ds vs
u

+ 65
d1.5s

u

(

Ts − T

Ts

)1/4

(13)

3) Concawe formula

In Brummage (1968), a comparison study was made between several plume rise formulae,

including the Holland-Stümke formula which was among the best. An attempt was made to

synthesize the multiple formulations into a relationship in the form ∆h = K
Qα

h

uβ , where Qh

is the source heat rate and K, α and β are empirical constants. It resulted in the Concawe

formulae:

∆h = 0.071
Q0.55

h

u0.67
(14)

Here, the ejection heat rate is computed using the source diameter, its ejection velocity

and the temperature difference between the plume and ambient air:

Qh = 228.19 vs d
2
s (Ts − T ) (15)

This is an approximation, based on the assumption that the calorific capacity of the ejected

gas is not too different from that of air.
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4) Partial penetration in the inversion layer

In the case of an elevated source with a large plume rise, the plume can partially or

totally penetrate the inversion layer (Figure 2). Thus, the part of the plume which is above

the inversion height is supposed to be trapped there and cannot re-enter the boundary layer.

Overlooking this phenomenon can lead to false estimations of the ground concentration,

either by overestimating concentrations if the plume is always trapped below the inversion

layer, or by underestimation if the plume is trapped above the inversion layer. A partial

penetration of the plume is therefore assumed when the plume centerline (after plume rise)

is close enough to the inversion height. The formulae come from Hanna and Paine (1989). If

the plume rise ∆h exceeds (zi− zs)/1.5, the top of the plume impacts the capping inversion,

and a partial or total penetration of the inversion layer occurs. The fraction of the plume that

has penetrated the inversion layer, called the penetration factor, is equal to P = 1.5−∆z/∆h

if 0.5 < ∆z/∆h < 1.5 (partial penetration), and P = 1 if ∆z/∆h ≤ 0.5 (total penetration),

where ∆z = zi − zs. In the case of a partial penetration, the fraction of the plume that

remains within the boundary layer has a new emission rate Q (1 − P ) and a new value

of plume rise ∆h′ = (0.62 + 0.38P )(zi − zs) (shown in Figure 2). In the case of a total

penetration, the remaining emission rate is equal to zero and there is no plume left in the

boundary layer.
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3. Comparison of the dispersion formulae

a. Comparison set-up

The evolution of the Gaussian standard deviations (without a possible additional spread

due to the diameter and/or plume rise) can be plotted for the parameterizations described

in the previous section, in order to evaluate the spread. It must be noted that the Briggs

formulae give σy and σz as a function of the downwind distance x from the source, whereas

the Doury and similarity-theory parameterizations are expressed according to the travel time

t. These two parameters are related through t = x/u, with u the wind speed. The evolution

of the standard deviations against t is given in Figure 3. The Briggs formulae are computed

for the six Pasquill stability classes, taking a wind speed value representative of the stability

class: u = 2m s−1 for A and F classes, u = 2.5m s−1 for B, u = 4m s−1 for C, u = 5.5m s−1

for D and u = 3m s−1 for E class. To compute the standard deviations with similarity theory,

some other meteorological data is needed, and the following values are taken: the friction

velocity u∗ = 0.3m s−1, the boundary layer height h = 500m. The Monin-Obukhov length

L is computed according to the relationship between L and the roughness length z0 given by

Golder (1972), taking the roughness value for Prairie Grass z0 = 0.01m. This leads to the

value for unstable cases (corresponding to B class) L = −5.86m, and for stable cases (E class)

L = 11.5m. The convective velocity is computed with the formula w3
∗
= −u3

∗
h/(0.4 L).

The plume height is taken at z = 1.5m.
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b. Evaluation of the standard deviations

Figure 3(a) shows the evolution of the horizontal standard deviations up to about three

hours. The values for σy at t = 9000 s range from 100m (similarity theory) to 3000m (Doury)

in stable cases. In unstable cases, there is less variability, since σy ranges from 1200m to

3000m. The standard deviation computed with similarity theory is the smallest in stable and

neutral cases, but it compares to the Briggs results in unstable cases. The Doury standard

deviations are comparable to the others in unstable cases, and the largest in the case of stable

situations. For larger travel times, it would grow above all other parameterizations. Also,

if the wind speed is very low (about 0.5m s−1), the downwind distance remains relatively

small even for large travel times, therefore the Doury and similarity-theory parameterizations

give larger standard deviations at a given distance than Briggs’s. The spread for the vertical

standard deviation is also very large (Figure 3(b)). In stable cases σz values range from about

20m (similarity theory) to 400m (Doury). In unstable cases, there are larger differences,

with σz ranging from 100m (similarity theory) to 3500m (Briggs, class A), so over 30 times

larger. Of all parameterizations, only the Briggs formulae for the unstable classes A, B and

C show standard deviations above 500m. Similarity theory is the parameterization giving

the smallest vertical standard deviation for all stabilities.

These preliminary results highlight a large variability in the standard deviations, de-

pending on the stability and the parameterization. Thus, a substantial variability can also

be expected in the output results. Besides, because of the differences in estimations of σz,

the plume might penetrate the inversion layer with some parameterizations and not with

others, which would increase the variability. It should also be pointed out that the stabil-
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ity diagnosis depends on the standard deviation formula used. For instance, in the Prairie

Grass experiments, the Pasquill-Turner diagnosis used with the Briggs formulae considers

30% of the experiments to be unstable, 20% stable and 50% neutral, whereas the diagnosis

based on Monin-Obukhov length (Table 8)—used for similarity theory—gives about 48%

of unstable cases and 52% of stable cases. This might compensate some of the differences

in the standard-deviation estimations: for instance, similarity theory in unstable cases and

Briggs’s formulae in neutral cases give similar estimations.

4. Evaluation with Prairie Grass experiment

a. Model evaluation criteria

The statistical evaluation method is used for all models in this comparison, and described

in Chang and Hanna (2004). It is also the method used in the Model Validation Kit (Olesen

and Chang 2005), which has been developed and tested during a series of workshops and con-

ferences on Harmonization within Atmospheric Dispersion Modeling for Regulatory purpose.

In many field experiments, the sensors are placed in arcs at various distances downwind of

the source, and the maximum predicted and observed concentrations for each arc (“maxi-

mum arcwise concentrations”) are compared. Therefore, all other concentration values on

the arc are not used in the comparison. The maximum observed value is determined on time-

averaged concentration measurements (the averaging time for Prairie Grass experiments is

10 minutes). The comparison study is carried out using maximum arcwise concentrations

normalized by the emission rate Q—so-called “centerline values”—in µg m−3/(g s−1).
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The results are discussed using scatter diagrams as well as statistical performance mea-

sures such as the fractional bias (FB), the normalized mean square error (NMSE), the frac-

tion of predictions within a factor two of observations (FAC2) and the correlation coefficient

(Corr). The formulae to compute these statistics are given in Appendix 8. It should be

noted that these formulae give negative values of FB for model overprediction and positive

values if the model tends to underpredict concentrations. A perfect model would have Corr

and FAC2 equal to 1.0 and FB and NMSE equal to 0.0. As there is no such thing as a perfect

model, it is useful to determine typical performance measures for acceptable models. Those

criteria have been summarized in Chang and Hanna (2004) and in Hanna et al. (2004) based

on the evaluation of many models with many field datasets. A model is deemed acceptable

if the mean bias is within ±30% of the mean (−0.3 ≤ FB ≤ 0.3), if the random scatter is

about a factor of two to three of the mean (NMSE ≤ 4), and if the fraction of predictions

within a factor two of the observations is about 50 % (FAC2 ≥ 0.5).

b. Experiment and modeling set-up

The Prairie Grass experiment has become a standard database on which parameteriza-

tions have been fitted, and has been used for many model-evaluation studies. The experiment

took place in O’Neil, Nebraska, during summer 1956. The site was a flat terrain of short

cut grass. A continuous plume of SO2 was released, without plume rise, near the ground

(at 0.46m). Measurements were taken on five arcs at 50, 100, 200, 400 and 800m from the

source. A set of 43 of the 68 trials is usually used for model validations, including a wide

range of stability conditions during day and night. In our simulations, the stability classes
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are taken from the database used in Hanna et al. (2004) for FLACS evaluation, and the

other experimental data are taken from the US EPA (Environmental Protection Agency)

database (http://www.epa.gov/scram001/dispersion_prefrec.htm).

c. Comparison with other Gaussian models

Many Gaussian models and a few CFD models were evaluated with Prairie Grass exper-

iment. Three of the most used Gaussian models were compared in CERC (2007): ISCST3

and AERMOD are recommended by the US EPA, and ADMS4 is developed in the UK

and widely used in Europe. ISCST uses discrete categories to describe the atmospheric

stability (Pasquill-Guifford parameterization for rural areas and Briggs’s formulae for urban

area), whereas AERMOD and ADMS use boundary layer depth and Monin-Obukhov length

to describe the state of the atmospheric boundary layer. The CFD models FLACS (FLame

ACceleration Simulator) (Hanna et al. 2004), and Mercure (Demaël and Carissimo 2008)

were also evaluated using Prairie Grass data.

Table 1 shows the Prairie Grass statistics for Polyphemus plume model with several

parameterizations, along with the aforementioned Gaussian models. Results for ADMS4,

AERMOD and ISCST3 come from (CERC 2007). The statistics for these three models

are computed with a subset from the usual set of 43 experiments (used for Polyphemus

evaluation), hence the differences in the mean observed centerline values. The statistics

presented here are computed for the centerlines of the five arcs. Most values in Table 1 are

within the acceptable range defined in Section a. AERMOD, ISCST3 and Polyphemus with

the Briggs formulae show good results, as expected since the parameterizations they use for

15



standard deviations are fitted on Prairie Grass experiment. On the contrary, the results for

Polyphemus with Doury’s formula and ADMS4 are hardly within the range of acceptable

model performance for all indicators: ADMS4 underpredicts the mean concentrations by

about 30%, and only 29% of the values predicted by the Doury model are within a factor

two of the observations. Polyphemus with similarity theory shows very good results—there

is almost no bias, and the correlation and NMSE are the best of all models presented here.

A more detailed analysis of the results with Polyphemus Gaussian models is provided below.

d. Statistics for each arc

The model performance is now analyzed for the five monitoring arcs, so as to compare the

behavior of the three standard-deviation parameterizations. Figure 4 shows the statistical

indicators, described in Section a, computed on the centerline values for each arc separately,

for the 43 experiments. The “acceptable range” as defined in Section a is delimited by the

dashed lines. Most indicators show a decreasing performance at farther distances from the

source, except the correlation. Whereas Briggs’s and Doury’s parameterizations underpredict

the concentrations—this tendency increases with the distance (FB grows higher)—similarity

theory overpredicts the concentrations, especially at the farthest arcs (400m and 800m).

This can be related to the small standard deviation values given by this parameterization,

pointed out in Section 3. At the first two arcs (50m and 100m), similarity theory gives the

best results for all indicators. Finally, the Doury parameterization shows a poor performance

in terms of FAC2, as well as for NMSE and FB, for all distances. In comparison to these

results, the FLACS results reported in Hanna et al. (2004) underestimated the concentra-
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tions at the shortest distances (up to 200m), and slightly overpredicted the results at the

farthest arcs. Demaël and Carissimo (2008) also found the underestimation tendency for

Mercure CFD model at short distances. They attributed it to the Eulerian dispersion which

corresponds to a plume behavior in σ ∝
√
t (with t the travel time) whereas the plume

dispersion at short range should be in σ ∝ t. For C, D and E stability classes, the overall

performance of the Mercure CFD model was shown to be between that of the Briggs and

Doury parameterizations.

Figure 5 shows the scatter plots for the three parameterizations. While the behavior

of the model with the Briggs parameterization is quite well fitted with the observations,

the overprediction tendency at the two further arcs is clearly shown for similarity theory.

The scatter plot for the Doury parameterization confirms its poor performance especially

in term of FAC2: the results for one arc are almost flat, which means that the modeled

concentrations at one arc do not vary much with the different experiments. This could come

from the representation of the atmosphere stability in only two classes (normal and low

diffusion) which may be insufficient in some meteorological situations. Section 3 also showed

that the Doury parameterization can give a very high value of σy compared to the other two

parameterizations at a given distance, especially at low wind speeds.
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5. Evaluation with Kincaid experiment

a. Experiment and modeling set-up

The Kincaid experiment took place at the Kincaid power plant in Illinois (USA) in 1980

and 1981. The plant stack is 187m high with a diameter of 9 meters and is surrounded

by flat farmland and some lakes. Meteorological data came from an instrumented tower,

and the conditions during the experiments ranged from neutral to convective. The tracer

material was a buoyant plume of SF6 gas, released from the stack and measured by monitors

deployed on arcs between 0.5 and 50 km from the source at ground level. There were 200

monitors that were shifted day-to-day to correspond to the wind direction, and the arcs

distances also varied with the meteorological situation. The recorded measurements are the

arc maximum concentrations averaged over 1 hour. The database contains 171 hours of

measurements. This dataset is often used to validate plume rise parameterizations because

of the highly buoyant release that led to substantial plume rise. All data used for the

following simulations is given with the Model Validation Kit (http://www.harmo.org/kit/

Download.asp). In this dataset, a quality indicator was assigned to each measurement value,

denoting how reliable the maximum concentration should be considered (Olesen 1995). Only

the most reliable data, of quality 2 and 3, were used here. The statistics are computed on

165 experiments.

It has to be pointed out that in the following study, the simulations with Polyphemus

Gaussian model use the observed inversion height when available and, for some cases, the

predicted height. On the contrary, other models presented here like ADMS, AERMOD, and

most likely OML and HPDM, recomputed the inversion height with their own preprocessor.
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This could lead to significant differences, since this height is of great importance to know

whether the plume touches the ground or is trapped above the inversion layer, as explained

in Section 2. Simulations were carried out with three parameterizations for standard devi-

ations (similarity-theory, Briggs’s and Doury’s) and three parameterizations for plume rise

described in Section 2. The chimney diameter as well as the initial plume spread due to

plume rise were taken into account in the total standard deviations (Equation 2). When

similarity theory is used, the alternative HPDM formulae for elevated release detailed in

Appendix 7 are used. Compared to the usual similarity-theory parameterization, it slightly

increases the overestimation but it also improves the correlation coefficient, especially with

Briggs-HPDM plume rise. The model evaluation consists, first, in comparing the results

with the different parameterizations, with an emphasis on the plume rise description. In a

second part, we compare the results with those of other models.

b. Model evaluation

1) Plume rise

A first analysis of the plume rise values is done in this section, so as to compare the

plume rise formulations and to give an insight on the additional variability due to plume

rise. Figure 6 shows the plume rise values computed with the three parameterizations and

165 experiments, against the wind speed. As expected, the plume rise decreases with higher

wind speeds, smoothing discrepancies between the different schemes. It was pointed out,

for example in Canepa et al. (2000), that the Briggs scheme has a tendency to overestimate

plume rise at low wind speeds. Indeed, the plume rise given by the Briggs-HPDM scheme
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reaches very high values for low wind speeds. The Holland and Concawe plume rises are

similar, which is not surprising considering that the former was used in the design of the

latter. Hence, we can suppose that the model behavior will be similar for those two schemes,

whereas using Briggs-HPDM could lead to a model underestimation, if the plume is predicted

to be too high. In addition, Table 2 shows the proportion of cases in Kincaid experiments

with total or partial penetration in the inversion layer: as expected, it is higher for Briggs-

HPDM plume rise, with almost 60% of the cases. The Holland and Concawe plume rises

give about the same number of cases with total penetration. However, there are less cases

with partial penetration given by Holland than by Concawe formulae.

Hereafter, evaluation results are analyzed for each of the three plume-rise parameteri-

zations (statistics on all arcs and experiments). For each plume rise parameterization, the

scheme for standard deviations which performs best is in bold in the tables. The similarity-

theory parameterization is labeled “Sim.th.”.

2) Results with Briggs-HPDM plume rise

Table 3 shows the model results with Briggs-HPDM plume rise, for the three standard-

deviation schemes. As expected, the tendency is to underpredict the concentrations, by a

factor of two for the Briggs formulae and three for the Doury formulae. On the contrary,

the similarity-theory parameterization performs quite well for all indicators (since there is

nearly no bias), except for the correlation, which is quite low for all standard deviations.

This is confirmed by Figure 7 where the scatter plot for the Briggs formulae clearly

indicates the underestimation tendency (Figure 7(b)), whereas the one with similarity theory
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(Figure 7(a)) is much more centered. However, in both cases, one can observe “vanishing

concentrations”—concentrations that are observed but are not reproduced by the model.

This can occur when the plume rise is too high, if the plume totally penetrates the inversion

layer, or if it touches the ground later than the observed plume. In the first case, simulated

concentrations are equal to zero at all arcs for the experiment, since there is no re-entering

of the plume below the inversion layer. In the second case, only the concentrations at the

nearest arcs to the source are missing, that is, the highest concentrations. This phenomenon

could be responsible for the low correlations that are globally observed.

3) Results with Holland plume rise

Results with Holland plume rise are given in Table 4. The modeled concentrations are

globally higher than with the HPDM plume rise, since the estimated plume rise is lower.

However, the Doury parameterization still underestimates considerably the concentrations,

as with the Prairie Grass experiment. The bias and NMSE are considerably improved for

the Briggs parameterization whereas the concentrations overestimation with similarity theory

has increased, leading to a higher bias and NMSE than with HPDM plume rise.

The “vanishing concentrations” can be seen for the scatter plots of all plume rise param-

eterizations (not shown here), not only for Briggs-HPDM. Hence, one cannot point out that

a particular scheme overestimates the plume rise, and this may also come from an inaccurate

estimation of the observed boundary layer height.
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4) Results with Concawe plume rise

Here, the best results are given by the Briggs parameterization, as in the case of the

Holland formulae. For the Briggs-HPDM plume rise, the best results were with similarity

theory. As expected, the results with Concawe plume rise are not very different from the

Holland results, especially when looking at the mean concentrations and the biases. However,

the correlation and the proportion of values within a factor two of the observation have

increased. This slightly better performance is not surprising, considering that this formula

was built from a set of different plume rise formulae, including Holland, and adjusted on a

set of cases, especially neutral and convective cases with buoyant plumes, as explained in

Brummage (1968).

c. Comparison with other Gaussian models

For this comparison, we use the results obtained with the Concawe parameterization

which gives the best results for all standard-deviation formulae. In addition, the results with

similarity theory and HPDM plume rise are also provided since they are good despite the

lower correlation. Results for the other models come from CERC (2007), as in the case of

Prairie Grass, for quality 2 and 3 (Table 6). As noted in Section a, we used 165 experiments

instead of 171, hence the slight differences in the observed mean and standard deviations.

Results with Polyphemus models are between those of AERMOD and ADMS4, except for

the correlations that are lower as already observed, and comparable to these of ISCST3.

Using data of quality 3 only, we can also compare with HPDM (USA, Hanna and Paine

(1989)), OML (Denmark), SAFE AIR (Italy, Canepa et al. (2000)), as well as the Lagrangian

22



model NAME (UK, Webster and Thomson (2002)). The statistics for HPDM and OML come

originally from Olesen (1995). Table 7 shows the results for all these models. ISCST3, AER-

MOD and Polyphemus with the Doury formulae show a significant underestimation of the

mean values, hence the high bias and NMSE. All other models slightly underestimate the

mean values except SAFE AIR and Polyphemus with similarity theory and Concawe plume

rise which slightly overpredicts the observations. The correlation results are surprisingly

against this trend: for instance, AERMOD has a correlation of 40% which is comparable

to the best results. On the contrary, models that have an otherwise good performance such

as SAFE AIR, OML, and Polyphemus models with Concawe formulae have relatively low

correlations. The correlation for Polyphemus with similarity theory and HPDM plume rise

is very low (5%) but this configuration is among the best models for all other indicators.

This correlation is not surprising since the HPDM model evaluation in Hanna and Paine

(1989) also showed low correlations with this experiment. Further improvements were made

in HPDM, such as a correction to take into account the plume lofting at the inversion layer

during convective conditions, and this seems to have greatly improved the results. Table 7

also shows that the spread in the model outputs is very large: the predicted mean concentra-

tions range from about 20 ngm−3/g s−1 to 70 ngm−3/g s−1, which means more than a factor

of 3 between some models. It is interesting to note that, with the different parameteriza-

tions available in Polyphemus for standard deviations and plume rise, we can reproduce the

same spread, the model configuration being otherwise unchanged. Only the correlations are

still low, no matter the formula used, which tends to prove that it comes from the shared

inversion-height modeling (plume penetration and lofting).
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6. Conclusion

Polyphemus Gaussian plume and puff models were described, with an emphasis on the

parameterizations used to estimate the standard deviations and the plume rise. The Gaussian

plume model was then used to compare these various parameterizations within a single

framework, all other model features being equal. A preliminary study on the standard

deviation values (Section 3) highlighted a large variability: the estimated values could differ

from up to a factor 30. Although the variability of the estimated plume rise is not so high,

except for low wind speeds (Section 5), it produces an additional variability in the output

results, especially since the plume might penetrate the inversion layer or not, depending on

the parameterization.

The model evaluation against Prairie Grass and Kincaid experiments gave very satisfac-

tory overall results, compared to other well-known Gaussian models. Similarity theory is

the best standard-deviation scheme, which is not surprising since it relies on a more detailed

description of the atmosphere. However, the Briggs formulae also compare well with other

model results, not only with Prairie Grass experiment—on which they were adjusted—but

also with Kincaid. Only the Doury parameterization appears to be unsatisfactory for the two

experiments used here, since it tends to overestimate the plume spread, leading to under-

estimation of the concentrations. There is no striking difference in performance—for these

cases—between “old generation” schemes, based on a discrete representation of the stability

(Briggs, Pasquill-Guifford used in ISCST3) and the “new generation” estimations based on

similarity theory, although the latter performs slightly better.

The results with Kincaid experiment point out the additional variability due to plume
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rise estimation. In particular, the “best” standard-deviation parameterization depends on

the plume rise scheme used (similarity theory with Briggs-HPDM plume rise, and Briggs’s

standard deviations with Concawe and Holland formulae). All combinations perform well,

except with the Doury formulae. The results also highlight the importance of some features

such as a non-Gaussian shape for convective conditions, as well as plume lofting at the

inversion layer. These missing features are most likely responsible for the relatively low

correlations. A meteorological preprocessor that would recompute the inversion height could

also help improving the results for Kincaid experiment.

With three parameterizations to compute the standard deviations, and the same number

of plume rise schemes, we were able to show a large spread in the model outputs, represen-

tative of the variability of the Gaussian models. The main perspective is now to extend that

work in order to include more parameterizations and to compare with more datasets, pro-

viding a full comparison between parameterizations in the same conditions. This study also

suggests that ensemble modeling with Gaussian models could be interesting in the future.

APPENDIX

7. Formulae for standard deviations with similarity the-

ory

In all the formulae presented here, the stability is determined from the Monin-Obukhov length,

as given in Table 8, which also shows the corresponding Pasquill class.
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a. Within the boundary layer

1) Transverse spread σy

First, we have to determine the horizontal standard deviation of wind velocity fluctuations σv.

For that part we use formulae given in Hanna et al. (1982).

σv = u∗
(

12− 0.5 h
L

)1/3
unstable

σv = 1.3 u∗ exp
(

−2 f z
u∗

)

neutral

σv = max(1.3 u∗
(

1− z
h

)

, 0.2) stable

where h is the boundary layer height, L is the Monin-Obukhov length, f is the Coriolis parameter

and z is the height where concentrations are computed.

The function Fy is given by the general form

Fy =

(

1 + 0.5
t

τL

)

−1/2

(A1)

where τL is the Lagrangian time scale. To compute this parameter, we use formulae given in Hanna

(1984).

τL = 0.15 h
σv

unstable

τL = 0.5 z
σv

/
[

1 + 15 f z
u∗

]

neutral

τL = 0.07 h
σv

√

z
h stable (A2)

where h is the boundary layer height, L is the Monin-Obukhov length, u∗ is the friction velocity, f

is the Coriolis parameter and z is the height where concentrations are computed.
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2) Vertical spread σz

The vertical wind standard deviation is computed using formulae given in Venkatram et al.

(1984) for stable and neutral cases and in Weil (1988) for convective cases.

σw = 0.6 w∗ unstable

σw = 1.3 u∗
(

1− z
h

)3/4
stable/neutral

where w∗ is the convective velocity, u∗ is the friction velocity, h the boundary layer height and L

the Monin-Obukhov length.

The function Fz is given by Irwin (1979) for stable and neutral case and by Weil (1988) for

convective cases.

• Unstable cases:

Fz =

(

1 + 0.5
t

τLz

)

−1/2

(A3)

• Stable/Neutral cases:

Fz =















[

1 + 0.9 ( t
50
)
]

−1
if z < 50

[

1 + 0.945 (0.1 t)0.806
]

−1
if z ≥ 50

where h is the boundary layer height, L is the Monin-Obukhov length, z is the height where

concentrations are computed. The following expression is advocated by Hanna et al. (1982) for the

vertical Lagrangian time scale τLz :

τLz = 0.15 h
1−exp

(

−5 z
h

)

σw
unstable

τLz = 0.5 z
σw

/
[

1 + 15 f z
u∗

]

neutral

τLz = 0.10 h
σw

(

z
h

)0.8
stable
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b. Alternative formulae for elevated sources

In Hanna and Paine (1989), an alternative set of formulae is proposed for sources of height

greater than 100m, since the other formulations based on similarity theory were calibrated on

experiments closer to the ground and did not give satisfactory results in the case of the Kincaid

experiment, for instance. These formulae are used for stable or neutral cases, where dispersion was

found to be greater than given by the classical formulation.

• The wind vertical standard deviation is computed as:

σw = 0.5
√

1.2 u2
∗
+ 0.35 w2

∗
L ≥ 100

σw = 1.3 u∗ 0 ≤ L < 100

• The wind horizontal standard deviation is computed as:

σv = 0.7
√

3.6 u2
∗
+ 0.35 w2

∗
L ≥ 100

σv = max
(

1.5
√

3.6 u2
∗
+ 0.35 w2

∗
, 0.5

)

0 ≤ L < 100

For the vertical standard deviation, the function Fz does not change, but the vertical time scale

is computed with a different set of formulae for stable and slightly unstable cases. In the following

formulae, sp stands for the Briggs static stability parameter defined in Section 2.

• In the case of stable/neutral situations (L > 0.):

τLz = z/σw if z ≤ L

τLz = 0.27
√
sp if L ≤ 10

τLz = (z/σw) (L− 10)/(z − 10) + 0.27
√
sp (z − L)/(z − 10) if 10 < L < z

• In the case of slightly unstable situations (|L| ≤ 100):

τLz = 0.27 (z/σw) (0.55− 0.38 z/|L|) if z ≤ |L| (A4)
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τLz = 0.3 (h/σw) (1− exp(−5z/h)− 0.0003 exp(8z/h)) if |L| < z < h (A5)

c. Above the boundary layer

1) HPDM formulae for wind standard deviations

All the formulae given by similarity theory are valid only within the boundary layer. There

are not many studies about the dispersion above the boundary layer, so the formulae used for that

case are quite simple. They come from Hanna and Paine (1989).

σv = 0.1
√

3.6 u2
∗
+ 0.35 w2

∗
(A6)

σw = 0.1
√

1.2 u2
∗
+ 0.35 w2

∗
(A7)

They are applied for all stabilities. They ensure that the dispersion parameters at least are always

strictly positive values (no division by zero or square root of a negative value...). However, since in

most case studies the observed concentrations are inside the boundary layer, and there is no mixing

through the inversion layer, these are not the most used formulae in practice.

2) Gillani formula for vertical standard deviation

An alternative way to compute σz above the boundary layer is given by Gillani and Godowitch

(1999):

σ2
z = σ2

zpr (1 + 2.3
√
t) (A8)

assuming that t is the time travel of the plume, as usual, and the initial time is equal to 0. One

can note that this formula can be applied above the boundary layer for all parameterizations.

The initial plume spread σzpr due to plume rise is computed differently from the formula given in

Section 2 since the initial spread is often overestimated that way. An alternative way proposed by
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Gillani and Godowitch (1999) is:

σzpr = max (15 exp(−117 dT/dz), 3) (A9)

where dT/dz is the vertical ambient temperature gradient.

8. Statistical indicators

FB =
(C̄0 − C̄p)

0.5(C̄0 + C̄p)
(A10)

NMSE =
(C0 − Cp)2

C̄0C̄p
(A11)

Corr =
(C0 − C̄0)(Cp − C̄p)

σC0
σCp

(A12)

FAC2 = fraction of data that satisfies 0.5 6
Cp

C0

6 2.0 (A13)

where Cp and C0 are the predicted and measured maximum arcwise concentrations respectively,

α is the average of value α over the dataset (that is, for all experiments and arcs), and σα is the

standard deviation over the dataset.
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Stümke, H., 1963: Vorschlag einer empirischen Formel für die Schornsteinüberhöhung. Staub, 23,
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Model Mean FB NMSE Corr FAC2

Observations 2.23 0.00 0.00 1.00 1.00
ADMS4 1.56 0.36 3.01 0.63 0.66
AERMOD 2.14 0.04 1.83 0.75 0.73
ISCST3 2.01 0.11 1.78 0.72 0.61

Observations 2.32 0.00 0.00 1.00 1.00
Briggs 2.33 0.00 1.83 0.78 0.74
Doury 1.74 0.29 2.58 0.67 0.29
Similarity theory 2.34 -0.01 0.91 0.85 0.62

Table 1. Statistics for several Gaussian models: comparison of maximum arc concentration

for simulation and observation. Polyphemus results are presented for three formulae for standard

deviations and 43 trials in Prairie Grass Experiment.
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Model Total penetration Partial penetration

Briggs-HPDM 29% 28%
Holland 23% 17%
Concawe 24% 23%

Table 2. Proportion of cases with total or partial penetration in the inversion layer for all three

plume rise parameterizations. Proportion with respect to 165 experiments.
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Model Mean std FB NMSE Corr FAC2

Obs 39.89 39.22 0.00 0.00 1.00 1.00

Briggs 21.33 21.10 0.61 2.37 0.19 0.43
Doury 12.77 14.09 1.03 4.70 0.07 0.22
Sim.th. 42.02 34.73 -0.05 1.33 0.19 0.45

Table 3. Statistics for Polyphemus Gaussian models: comparison of centerline values C/Q for

simulations and observations—Kincaid data of quality 2 and 3. There are 165 experiments. Unit

is ng m−3/(g s−1). Plume rise is computed with Briggs-HPDM formulae.
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Model Mean std FB NMSE Corr FAC2

Obs 39.89 39.22 0.00 0.00 1.00 1.00

Briggs 33.01 28.26 0.19 1.46 0.21 0.42
Doury 15.87 13.27 0.86 3.55 0.04 0.28
Sim.th. 61.97 47.52 -0.43 1.38 0.24 0.38

Table 4. Statistics for Polyphemus Gaussian models: comparison of centerline values C/Q for

simulations and observations—Kincaid data of quality 2 and 3. There are 165 experiments. Unit

is ng m−3/(g s−1). Plume rise is computed with Holland formulae.
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Model Mean std FB NMSE Corr FAC2

Obs 39.89 39.22 0.00 0.00 1.00 1.00

Briggs 32.88 32.75 0.19 1.49 0.27 0.48
Doury 16.87 17.74 0.81 3.29 0.12 0.31
Sim.th. 61.82 53.79 -0.43 1.57 0.24 0.43

Table 5. Statistics for Polyphemus Gaussian models: comparison of centerline values C/Q for

simulations and observations—Kincaid data of quality 2 and 3. There are 165 experiments. Unit

is ng m−3/(g s−1). Plume rise is computed with Concawe formulae.
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Model Mean std FB NMSE Corr FAC2

Obs 41.0 39.3 0.00 0.00 1.00 1.00
ADMS4 40.4 31.1 -0.05 0.80 0.50 0.58

AERMOD 20.3 24.1 0.68 2.30 0.35 0.33
ISCST3 23.1 53.3 0.56 3.83 0.26 0.26

Obs 39.89 39.22 0.00 0.00 1.00 1.00
Briggs/Concawe 32.83 32.80 0.19 1.50 0.27 0.47
Doury/Concawe 16.75 17.81 0.82 3.32 0.12 0.30
Sim.th./Concawe 61.70 53.91 -0.43 1.58 0.25 0.43
Sim.th/HPDM 41.99 34.76 -0.05 1.33 0.19 0.44

Table 6. Statistics for several Gaussian models: comparison of centerline values C/Q for simu-

lations and observations—Kincaid data of quality 2 and 3. Unit is ng m−3/(g s−1).
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Model Mean std FB NMSE Corr FAC2

Obs 54.34 40.25 0.00 0.00 1.00 1.00
ADMS4 48.5 31.5 0.11 0.60 0.45 0.68

AERMOD 21.8 21.8 0.86 2.07 0.40 0.29
ISCST3 30.0 60.0 0.57 2.80 0.26 0.28
HPDM 44.84 38.55 0.19 0.75 0.44 0.56

SAFE AIR 59.73 52.54 -0.09 1.10 0.20 0.50
OML 47.45 45.48 0.13 1.24 0.15 0.55
NAME 38.7 47.2 0.33 1.45 0.27 0.56

Obs 53.69 40.72 0.00 0.00 1.00 1.00
Briggs/Concawe 37.95 33.06 0.34 1.20 0.21 0.58
Doury/Concawe 17.36 14.21 1.02 3.19 0.18 0.30
Sim.th./Concawe 68.91 51.25 -0.25 1.03 0.17 0.58
Sim.th/HPDM 47.92 33.93 0.11 1.05 0.05 0.59

Table 7. Statistics for several Gaussian models: comparison of centerline values C/Q for simu-

lation and observation—Kincaid data of quality 3. Unit is ng m−3/(g s−1).
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L: Monin-Obukhov length (m) Stability Pasquill class

−100 ≤ L < 0 unstable B
−105 ≤ L < −100 unstable C

|L| > 105 neutral D
10 ≤ L < 105 stable E
0 ≤ L < 10 stable F

Table 8. Matching between Monin-Obukhov length and stability, from Seinfeld and Pandis
(1998).
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Fig. 1. Representation of an elevated source: zs is the source height and zp is the effective
source height, with plume rise. The modeled point of emission is at zp but the downwind
travel is neglected during plume rise. The initial plume spread due to plume rise is σzpr .
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Fig. 2. Partial penetration in the inversion layer: zs is the source height and zi is the
inversion layer source height. The penetration factor is noted P . The initial plume rise is
∆h and the plume rise of the remnant part of the plume within the boundary layer is ∆h′.
Finally, Q is the total emission rate.
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Fig. 3. Evolution of the Gaussian standard deviations σy and σz against of the travel
time from the source, for Briggs’s formulae (six stability classes), Doury’s parameterization
(normal diffusion) and similarity-theory scheme (stable, neutral and unstable cases.
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Fig. 4. Evolution of the statistics against the downwind distance from source, for six
statistical indicators and the three standard deviation parameterizations. The statistics are
computed at five monitoring arcs (50m,100m, 200m, 400m and 800m). The acceptable
performance is situated between the dashed lines.
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(a) Doury parameterization
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(b) Briggs parameterization
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(c) Similarity theory

Fig. 5. Scatter plot of maximum arc concentrations for observations and simulations with various
sigma parameterizations. Prairie Grass experiment, 43 trials. Unit is µg m−3/(g s−1). The results
are shown at five monitoring arcs (50m,100m, 200m, 400m and 800m).
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Fig. 6. Plume rise (in m) computed by the different schemes for Kincaid experiments, as a function
of the wind speed.
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Fig. 7. Scatter plots of centerline values C/Q for simulations and observations—Kincaid data of
quality 2 and 3. There are 165 experiments. Unit is ng m−3/(g s−1). Plume rise is computed with
the Briggs-HPDM formulae. Standard deviations are computed with the Briggs and similarity-
theory formulae.
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