48 research outputs found

    Cops and CoCoWeb: Infrastructure for Confluence Tools

    Get PDF
    In this paper we describe the infrastructure supporting confluence tools and competitions: Cops, the confluence problems database, and CoCoWeb, a convenient web interface for tools that participate in the annual confluence competition

    Reducing relative termination to dependency pair problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21401-6_11Relative termination, a generalized notion of termination, has been used in a number of different contexts like proving the confluence of rewrite systems or analyzing the termination of narrowing. In this paper, we introduce a new technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. The practical significance of our method is illustrated by means of an experimental evaluation.Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad under grant TIN2013-44742-C4-R and by the Generalitat Valenciana under grant PROMETEOII201/013. Akihisa Yamadais supported by the Austrian Science Fund (FWF): Y757Iborra, J.; Nishida, N.; Vidal Oriola, GF.; Yamada, A. (2015). Reducing relative termination to dependency pair problems. En Automated Deduction - CADE-25. Springer. 163-178. https://doi.org/10.1007/978-3-319-21401-6_11S163178Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A \vee C-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reasoning 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980, unpublished note)Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer, Heidelberg (2005)Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London (2002)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. (2014). doi: 10.1016/j.scico.2014.07.009Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    The academic–vocational divide in three Nordic countries : implications for social class and gender

    Get PDF
    In this study we examine how the academic–vocational divide is manifested today in Finland, Iceland and Sweden in the division between vocationally (VET) and academicallyoriented programmes at the upper-secondary school level. The paper is based on a critical re-analysis of results from previous studies; in it we investigate the implications of this divide for class and gender inequalities. The theoretical lens used for the synthesis is based on Bernstein´s theory of pedagogic codes. In the re-analysis we draw on previous studies of policy, curriculum and educational praxis as well as official statistics. The main conclusions are that contemporary policy and curriculum trends in all three countries are dominated by a neo-liberal discourse stressing principles such as “market relevance” and employability. This trend strengthens the academic–vocational divide, mainly through an organisation of knowledge in VET that separates it from more general and theoretical elements. This trend also seems to affect VET students’ transitions in terms of reduced access to higher education, particularly in male-dominated programmes. We also identify low expectations for VET students, manifested through choice of textbooks and tasks, organisation of teacher teams and the advice of career counsellors.Peer reviewe

    Reachability Analysis with State-Compatible Automata

    No full text
    Abstract. Regular tree languages are a popular device for reachability analysis over term rewrite systems, with many applications like analysis of cryptographic protocols, or confluence and termination analysis. At the heart of this approach lies tree automata completion, first introduced by Genet for left-linear rewrite systems. Korp and Middeldorp introduced so-called quasi-deterministic automata to extend the technique to non-left-linear systems. In this paper, we introduce the simpler notion of state-compatible automata, which are slightly more general than quasi-deterministic, compatible automata. This notion also allows us to decide whether a regular tree language is closed under rewriting, a problem which was not known to be decidable before. Several of our results have been formalized in the theorem prover Is-abelle/HOL. This allows to certify automatically generated non-confluence and termination proofs that are using tree automata techniques.

    Stereoselective synthesis of pyrrolidinyl glycines from nitrones: complementarity of nucleophilic addition and 1,3-dipolar cycloaddition

    No full text
    4 pages, 4 schemes, 2 figures.-- et al.Epimeric pyrrolidinyl glycines, a sort of conformationally constrained α,β-diaminoacids, were stereoselectively prepared using complementary approaches based on nitrone chemistry. Nucleophilic additions to pyrrolidinyl nitrones and 1,3-dipolar cycloadditions of l-serine derived nitrones to form the corresponding hydroxylamines and isoxazolidines, respectively, provided key intermediates for the synthesis of the target compounds. Whereas the nucleophilic addition route afforded the syn adduct, the 1,3-dipolar cycloaddition approach furnished the precursor for the preparation of the corresponding anti compound.We thank the Ministerio de Educacion y Ciencia (MEC, Project CTQ2004-0421), the European Union (Project TRIoH, LSHB-CT-2003-503480), and the Regional Government of Aragon (DGA) for financial support. I.D. thanks DGA for a pre-doctoral grant.Peer reviewe

    Confluence of Non-Left-Linear TRSs via Relative Termination

    Get PDF
    We present a confluence criterion for term rewrite systems by relaxing termination requirements of Knuth and Bendix' confluence criterion, using joinability of extended critical pairs. Because computation of extended critical pairs requires equational unification, which is undecidable, we give a sufficient condition for testing joinability automatically.Logic for Programming, Artificial Intelligence, and Reasoning. Proceedings of the 18th International Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012

    Formalizing Bounded Increase ⋆

    No full text
    Abstract. Bounded increase is a termination technique where it is tried to find an argument x of a recursive function that is increased repeatedly until it reaches a bound b, which might be ensured by a condition x < b. Since the predicates like < may be arbitrary user-defined recursive functions, an induction calculus is utilized to prove conditional constraints. In this paper, we present a full formalization of bounded increase in the theorem prover Isabelle/HOL. It fills one large gap in the pen-andpaper proof, and it includes generalized inference rules for the induction calculus as well as variants of the Babylonian algorithm to compute square roots. These algorithms were required to write executable functions which can certify untrusted termination proofs from termination tools that make use of bounded increase. And indeed, the resulting certifier was already useful: it detected an implementation error that remained undetected since 2007.

    Termination of Isabelle functions via termination of rewriting

    No full text
    We show how to automate termination proofs for recursive functions in (a first-order subset of) Isabelle/HOL by encoding them as term rewrite systems and invoking an external termination prover. Our link to the external prover includes full proof reconstruction, where all necessary properties are derived inside Isabelle/HOL without oracles. Apart from the certification of the imported proof, the main challenge is the formal reduction of the proof obligation produced by Isabelle/HOL to the termination of the corresponding term rewrite system. We automate this reduction via suitable tactics which we added to the IsaFoR library
    corecore