21 research outputs found

    Global lung function initiative 2012 reference values for spirometry in Asian Americans

    Get PDF
    Background Spirometry reference values specifically designed for Asian Americans are currently unavailable. The performance of Global Lung Function Initiative 2012 (GLI-2012) equations on assessing spirometry in Asian Americans has not been evaluated. This study aimed to assess the fitness of relevant GLI-2012 equations for spirometry in Asian Americans. Methods Asian subjects who never smoked and had qualified spirometry data were extracted from the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Z-scores of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and FEV1/FVC were separately constructed with GLI-2012 equations for North East (NE) Asians, South East (SE) Asians, and individuals of mixed ethnic origin (Mixed). In addition, Proportions of subjects with observed spirometry data below the lower limit of normal (LLN) were also evaluated on each GLI-2012 equation of interest. Results This study included 567 subjects (250 men and 317 women) aged 6–79 years. Spirometry z-scores (z-FEV1, z-FVC, and z-FEV1/FVC) based on GLI-2012 Mixed equations had mean values close to zero (− 0.278 to − 0.057) and standard deviations close to one (1.001 to 1.128); additionally, 6.0% (95% confidence interval (CI) 3.1–8.9%) and 6.4% (95% CI 3.7–9.1%) of subjects were with observed data below LLN for FEV1/FVC in men and women, respectively. In contrast, for NE Asian equations, all mean values of z-FEV1 and z-FVC were smaller than − 0.5; for SE Asian equations, mean values of z-FEV1/FVC were significantly smaller than zero in men (− 0.333) and women (− 0.440). Conclusions GLI-2012 equations for individuals of mixed ethnic origin adequately fitted spirometry data in this sample of Asian Americans. Future studies with larger sample sizes are needed to confirm these findings

    Aβ Mediated Diminution of MTT Reduction—An Artefact of Single Cell Culture?

    Get PDF
    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    Inflammation in Alzheimer’s Disease and Molecular Genetics: Recent Update

    Full text link
    corecore