212 research outputs found

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Anomaly in temperature dependence of thermal transport of two hydrogen-bonded glass-forming liquids

    Get PDF
    6 págs.; 3 figs.; PACS number s : 66.70. f, 63.50. x, 65.20. w, 65.60. aThe thermal conductivity of two molecular glasses (ethanol and 1-propanol) decrease with increasing temperature up to their glass transitions at Tg 97 and 98 K, respectively. Within their supercooled liquid phases, the conductivity increases with rising temperature up to a maximum which roughly coincides with the liquidus (or melting temperatures Tm 159 K and Tm 149 K, respectively). From there on, the conductivity decreases with increasing temperature, a behavior common to most liquids examined so far, exception made of liquid water. The origin of the rather different dependencies with temperature of thermal transport is understood as a competition between phonon-assisted and diffusive transport effects which are amenable to experiments using high resolution quasielastic neutron scattering and visible and ultraviolet Brillouin light-scattering spectroscopies. © 2007 The American Physical Society.Peer Reviewe

    Low-temperature properties of monoalcohol glasses and crystals

    Get PDF
    We review and jointly discuss both earlier and recent experiments conducted by us on simple aliphatic glass-forming monoalcohols at low temperatures, including specific heat, thermal conductivity, Brillouin scattering and x-ray diffraction experiments. The family of simple monoalcohols constitutes an interesting model system to explore different relevant issues concerning molecular glass-forming liquids, low-temperature universal proper-ties of glasses, and even the glass transition phenomenon itself. More specifically, we discuss the role played by the molecular aspect ratio in vitrification/crystallization kinetics, the reported appearance of particular cases of polymorphism (in ethanol) and polyamorphism (in butanol), and especially the influence of position isomerism and the location of the hydrogen bond on the lattice dynamics and hence on the low-temperature universal prop-erties of glasses

    Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom

    Get PDF
    The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F-CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl2F-CCl2F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature rangeThis work was financially supported in part by the Spanish Ministry of Science and Innovation (Grant Nos. FIS2014-54734-P, FIS2011-23488, and MAT2014-57866- REDT), by the Catalan Government (Grant No. 2014SGR- 0581) and by the Comunidad de Madrid through program NANOFRONTMAG-CM (No. S2013/MIT-2850), as well as by the joint NAS Ukraine and Russian Foundation for Basic Research project “Metastable states of simple condensed systems” (Agreement No. N 7/-2013
    corecore