1,423 research outputs found
Process for preparation of large-particle-size monodisperse latexes
Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment
Learning cellular morphology with neural networks
Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction as well as automated detection of synapses. However, methods for automating the morphological analysis of nanometer-resolution reconstructions are less established, despite the diversity of possible applications. Here, we introduce cellular morphology neural networks (CMNs), based on multi-view projections sampled from automatically reconstructed cellular fragments of arbitrary size and shape. Using unsupervised training, we infer morphology embeddings (Neuron2vec) of neuron reconstructions and train CMNs to identify glia cells in a supervised classification paradigm, which are then used to resolve neuron reconstruction errors. Finally, we demonstrate that CMNs can be used to identify subcellular compartments and the cell types of neuron reconstructions
The first products made in space: Monodisperse latex particles
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
X-linked agammaglobulinemia diagnosed late in life: case report and review of the literature
<p>Abstract</p> <p>Background</p> <p>Common variable immune deficiency (CVID), one of the most common primary immunodeficiency diseases presents in adults, whereas X-linked agammaglobulinemia (XLA), an inherited humoral immunodeficiency, is usually diagnosed early in life after maternal Igs have waned. However, there have been several reports in the world literature in which individuals have either had a delay in onset of symptoms or have been misdiagnosed with CVID and then later found to have mutations in Bruton's tyrosine kinase (BTK) yielding a reclassification as adult-onset variants of XLA. The typical finding of absent B cells should suggest XLA rather than CVID and may be a sensitive test to detect this condition, leading to the more specific test (Btk mutational analysis). Further confirmation may be by mutational analyses.</p> <p>Methods</p> <p>The records of 2 patients were reviewed and appropriate clinical data collected. BTK mutational analysis was carried out to investigate the suspicion of adult-presentation of XLA. A review of the world literature on delayed diagnosis of XLA and mild or "leaky" phenotype was performed.</p> <p>Results</p> <p>2 patients previously diagnosed with CVID associated with virtual absence of CD19<sup>+ </sup>B cells were reclassified as having a delayed diagnosis and adult-presentation of XLA. <b>Patient 1</b>, a 64 yr old male with recurrent sinobronchial infections had a low level of serum IgG of 360 mg/dl (normal 736–1900), IgA <27 mg/dl (normal 90–474), and IgM <25 mg/dl (normal 50–415). <b>Patient 2</b>, a 46 yr old male with recurrent sinopulmonary infections had low IgG of 260 mg/dl, low IgA <16 mg/dl, and normal IgM. Mutational analysis of BTK was carried out in both patients and confirmed the diagnosis of XLA</p> <p>Conclusion</p> <p>These two cases represent an unusual adult-presentation of XLA, a humoral immunodeficiency usually diagnosed in childhood and the need to further investigate a suspicion of XLA in adult males with CVID particularly those associated with low to absent CD19<sup>+ </sup>B cells. A diagnosis of XLA can have significant implications including family counseling, detecting female carriers, and early intervention and treatment of affected male descendents.</p
Fractional Liouville and BBGKI Equations
We consider the fractional generalizations of Liouville equation. The
normalization condition, phase volume, and average values are generalized for
fractional case.The interpretation of fractional analog of phase space as a
space with fractal dimension and as a space with fractional measure are
discussed. The fractional analogs of the Hamiltonian systems are considered as
a special class of non-Hamiltonian systems. The fractional generalization of
the reduced distribution functions are suggested. The fractional analogs of the
BBGKI equations are derived from the fractional Liouville equation.Comment: 20 page
Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain
Neural circuit reconstruction at single synapse resolution is increasingly
recognized as crucially important to decipher the function of biological
nervous systems. Volume electron microscopy in serial transmission or scanning
mode has been demonstrated to provide the necessary resolution to segment or
trace all neurites and to annotate all synaptic connections.
Automatic annotation of synaptic connections has been done successfully in
near isotropic electron microscopy of vertebrate model organisms. Results on
non-isotropic data in insect models, however, are not yet on par with human
annotation.
We designed a new 3D-U-Net architecture to optimally represent isotropic
fields of view in non-isotropic data. We used regression on a signed distance
transform of manually annotated synaptic clefts of the CREMI challenge dataset
to train this model and observed significant improvement over the state of the
art.
We developed open source software for optimized parallel prediction on very
large volumetric datasets and applied our model to predict synaptic clefts in a
50 tera-voxels dataset of the complete Drosophila brain. Our model generalizes
well to areas far away from where training data was available
Photocurrent in nanostructures with asymmetric antidots
The steady current induced by electromagnetic field in a 2D system with
asymmetric scatterers is studied. The scatterers are assumed to be oriented
cuts with one diffusive and another specular sides. Besides, the existence of
isotropic impurity scatterers is assumed. This simple model simulates the
lattice of half-disk which have been studied numerically recently. The model
allows the exact solution in the framework of the kinetic equation. The static
current response in the second order of electric field is obtained. The
photogalvanic tensor contains both responses to linear and circular
polarization of electromagnetic field. The model possesses non-analyticity with
regards to the rate of impurity scattering.Comment: 9 pages, 6 figure
Recommended from our members
Audio Cartography: Visual Encoding of Acoustic Parameters
Our sonic environment is the matter of subject in multiple domains which developed individual means of its description. As a result, it lacks an established visual language through which knowledge can be connected and insights shared. We provide a visual communication framework for the systematic and coherent documentation of sound in large-scale environments. This consists of visual encodings and mappings of acoustic parameters into distinct graphic variables that present plausible solutions for the visualization of sound. These candidate encodings are assembled into an application-independent, multifunctional, and extensible design guide. We apply the guidelines and show example maps that acts as a basis for the exploration of audio cartography
- …