8,109 research outputs found
Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints
We have previously reported on chemical abundance trends with evolutionary
state in the globular cluster NGC 6397 discovered in analyses of spectra taken
with FLAMES at the VLT. Here, we reinvestigate the FLAMES-UVES sample of 18
stars, ranging from just above the turnoff point (TOP) to the red giant branch
below the bump. Inspired by new calibrations of the infrared flux method, we
adopt a set of hotter temperature scales. Chemical abundances are determined
for six elements (Li, Mg, Ca, Ti, Cr, and Fe). Signatures of cluster-internal
pollution are identified and corrected for in the analysis of Mg.
On the modified temperature scales, evolutionary trends in the abundances of
Mg and Fe are found to be significant at the 2{\sigma} and 3{\sigma} levels,
respectively. The detailed evolution of abundances for all six elements agrees
with theoretical isochrones, calculated with effects of atomic diffusion and a
weak to moderately strong efficiency of turbulent mixing. The age of these
models is compatible with the external determination from the white dwarf
cooling sequence. We find that the abundance analysis cannot be reconciled with
the strong turbulent-mixing efficiency inferred elsewhere for halo field stars.
A weak mixing efficiency reproduces observations best, indicating a
diffusion-corrected primordial lithium abundance of log {\epsilon}(Li) = 2.57
+- 0.10. At 1.2{\sigma}, this value agrees well with WMAP-calibrated Big-Bang
nucleosynthesis predictions.Comment: 14 pages, 5 figures, accepted by Ap
Design of helicopter rotor blades for optimum dynamic characteristics
The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering
Reversable heat flow through the carbon nanotube junctions
Microscopic mechanisms of externally controlled reversable heat flow through
the carbon nanotube junctions (NJ) are studied theoretically. Our model
suggests that the heat is transfered along the tube section by
electrons () and holes () moving ballistically in either in parallel or
in opposite directions and accelerated by the bias source-drain voltage (Peltier effect). We compute the Seebeck coefficient , electric
and thermal conductivities and find that their magnitudes
strongly depend on and . The sign reversal of
versus the sign of formerly observed experimentally is interpreted
in this work in terms of so-called chiral tunneling phenomena (Klein paradox)
Minimal hepatic toxicity of Onyx-015: spatial restriction of coxsackie-adenoviral receptor in normal liver.
We administered an adenoviral vector, Onyx-015, into the hepatic artery of patients with metastatic colorectal cancer involving the liver. Thirty-five patients enrolled in this multi-institutional phase I/II trial received up to eight arterial infusions of up to 2 x 10(12) viral particles. Hepatic toxicity was the primary dose-limiting toxicity observed in preclinical models. However, nearly 200 infusions of this adenoviral vector were administered directly into the hepatic artery without significant toxicity. Therefore, we undertook this analysis to determine the impact of repeated adenoviral exposure on hepatic function. Seventeen patients were treated at our institution, providing a detailed data set on the changes in hepatic function following repeated exposure to adenovirus. No changes in hepatic function occurred with the first treatment of Onyx-015 among these patients. Transient increases in transaminase levels occurred in one patient starting with the second infusion and transient increases in bilirubin was observed in two patients starting with the fifth treatment. These changes occurred too early to be explained by viral-mediated lysis of hepatocytes. In addition, viremia was observed starting 3-5 days after the viral infusion in half of the patient, but was not associated with hepatic toxicity. To further understand the basis for the minimal hepatic toxicity of adenoviral vectors, we evaluated the replication of adenovirus in primary hepatocytes and tumor cells in culture and the expression of the coxsackie-adenoviral receptor (CAR) in normal liver and colon cancer metastatic to the liver. We found that adenovirus replicates poorly in primary hepatocytes but replicates efficiently in tumors including tumors derived from hepatocytes. In addition, we found that CAR is localized at junctions between hepatocytes and is inaccessible to hepatic blood flow. CAR is not expressed on tumor vasculature but is expressed on tumor cells. Spatial restriction of CAR to the intercellular space in normal liver and diminished replication of adenovirus in hepatocytes may explain the minimal toxicity observed following repeated hepatic artery infusions with Onyx-015
Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells
Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied
via the fully microscopic kinetic spin Bloch equation approach where all the
scatterings, such as the electron-impurity, electron-phonon, electron-electron
Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus
mechanism) and the - exchange scatterings, are explicitly included. The
Elliot-Yafet mechanism is also incorporated. From this approach, we study the
spin relaxation in both -type and -type Ga(Mn)As quantum wells. For
-type Ga(Mn)As quantum wells where most Mn ions take the interstitial
positions, we find that the spin relaxation is always dominated by the DP
mechanism in metallic region. Interestingly, the Mn concentration dependence of
the spin relaxation time is nonmonotonic and exhibits a peak. This behavior is
because that the momentum scattering and the inhomogeneous broadening have
different density dependences in the non-degenerate and degenerate regimes. For
-type Ga(Mn)As quantum wells, we find that Mn concentration dependence of
the spin relaxation time is also nonmonotonic and shows a peak. Differently,
this behavior is because that the - exchange scattering (or the
Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn
concentration regime at low (or high) temperature, whereas the DP mechanism
determines the spin relaxation in the low Mn concentration regime. The
Elliot-Yafet mechanism also contributes the spin relaxation at intermediate
temperature. The spin relaxation time due to the DP mechanism increases with Mn
concentration due to motional narrowing, whereas those due to the spin-flip
mechanisms decrease with Mn concentration, which thus leads to the formation of
the peak.... (The remaining is omitted due to the space limit)Comment: 12 pages, 8 figures, Phys. Rev. B 79, 2009, in pres
A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars
A comprehensive model atom for Fe with more than 3000 energy levels is
presented. As a test and first application of this model atom, Fe abundances
are determined for the Sun and five stars with well determined stellar
parameters and high-quality observed spectra. Non-LTE leads to systematically
depleted total absorption in the Fe I lines and to positive abundance
corrections in agreement with the previous studies, however, the magnitude of
non-LTE effect is smaller compared to the earlier results. Non-LTE corrections
do not exceed 0.1 dex for the solar metallicity and mildly metal-deficient
stars, and they vary within 0.21 dex and 0.35 dex in the very metal-poor stars
HD 84937 and HD 122563, respectively, depending on the assumed efficiency of
collisions with hydrogen atoms. Based on the analysis of the Fe I/Fe II
ionization equilibrium in these two stars, we recommend to apply the Drawin
formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the Fe II
lines, non-LTE corrections do not exceed 0.01 dex in absolute value. The solar
non-LTE abundance obtained from 54 Fe I lines is 7.56+-0.09 and the abundance
from 18 Fe II lines varies between 7.41+-0.11 and 7.56+-0.05 depending on the
source of the gf-values. Thus, gf-values available for the iron lines are not
accurate enough to pursue high-accuracy absolute abundance determinations.
Lines of Fe I give, on average, a 0.1 dex lower abundance compared to those of
Fe II lines for HD 61421 and HD 102870, even when applying a differential
analysis relative to the Sun. A disparity between Fe I and Fe II points to
problems of stellar atmosphere modelling or/and effective temperature
determination.Comment: 19 pages, 8 figures, online material, accepted by A&
Design of helicopter rotor blades for optimum dynamic characteristics
The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated
- …