7,412 research outputs found

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering

    Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004

    Full text link
    We present spectroscopic abundance analyses of three main-sequence B stars in the young Large Magellanic Cloud cluster NGC 2004. All three targets have projected rotational velocities around 130 km/s. Techniques are presented that allow the derivation of stellar parameters and chemical abundances in spite of these high v sin i values. Together with previous analyses of stars in this cluster, we find no evidence among the main-sequence stars for effects due to rotational mixing up to v sin i around 130 km/s. Unless the equatorial rotational velocities are significantly larger than the v sin i values, this finding is probably in line with theoretical expectations. NGC 2004/B30, a star of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly shows signs of mixing in its atmosphere. To verify the effects due to rotational mixing will therefore require homogeneous analysis of statistically significant samples of low-metallicity main-sequence B stars over a wide range of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol. 633, p. 899

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated

    Axion Dark Matter and Cosmological Parameters

    Full text link
    We observe that photon cooling after big bang nucleosynthesis (BBN) but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of 7^7Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate (BEC) provides a possible mechanism, because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.Comment: 4 pages, one figure. Version to appear in Phys. Rev. Lett., incorporating useful comments by the referees and emphasizing that photon cooling by axion BEC is a possibility, not a certaint

    Reversable heat flow through the carbon nanotube junctions

    Full text link
    Microscopic mechanisms of externally controlled reversable heat flow through the carbon nanotube junctions (NJ) are studied theoretically. Our model suggests that the heat is transfered along the tube section T{\cal T} by electrons (ee) and holes (hh) moving ballistically in either in parallel or in opposite directions and accelerated by the bias source-drain voltage VSDV_{\rm SD} (Peltier effect). We compute the Seebeck coefficient α\alpha , electric σ\sigma and thermal κ\kappa conductivities and find that their magnitudes strongly depend on VSDV_{\rm SD} and VGV_{\rm G}. The sign reversal of α\alpha versus the sign of VGV_{\rm G} formerly observed experimentally is interpreted in this work in terms of so-called chiral tunneling phenomena (Klein paradox)

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    Bichiral structure of feroelectric domain wall driven by flexoelectricity

    Get PDF
    The influence of flexoelectric coupling on the internal structure of neutral domain walls in tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180-degree walls which are oblique with respect to the cubic crystallographic axes, while {100} and {110} walls stay "untouched". Being of the Ising type in the absence of the flexoelectric interaction, the oblique domain walls acquire a new polarization component with a structure qualitatively different from the classical Bloch-wall structure. In contrast to the Bloch-type walls, where the polarization vector draws a helix on passing from one domain to the other, in the flexoeffect-affected wall, the polarization rotates in opposite directions on the two sides of the wall and passes through zero in its center. Since the resulting polarization profile is invariant upon inversion with respect to the wall center it does not brake the wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric coupling lower the domain wall energy and gives rise to its additional anisotropy that is comparable to that conditioned by the elastic anisotropy. The atomic orderof- magnitude estimates shows that the new polarization component P2 may be comparable with spontaneous polarization Ps, thus suggesting that, in general, the flexoelectric coupling should be mandatory included in domain wall simulations in ferroelectrics. Calculations performed for barium titanate yields the maximal value of the P2, which is much smaller than that of the spontaneous polarization. This smallness is attributed to an anomalously small value of a component of the "strain-polarization" elecrostictive tensor in this material

    New Abundances for Old Stars - Atomic Diffusion at Work in NGC 6397

    Full text link
    A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffusion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are significantly lower than the abundance found to be produced shortly after the Big Bang.Comment: 8 pages, 7 colour figures, 1 table; can also be downloaded via http://www.eso.org/messenger
    • …
    corecore