335 research outputs found

    About the relation between the quasiparticle Green's function in cuprates obtained from ARPES data and the magnetic susceptibility

    Get PDF
    Angle resolved photoemission spectroscopy (ARPES) provides a detailed view of the renormalized band structure in cuprates and, consequently, is a key to the self-energy and the quasiparticle Green's function. Such information gives a clue to the comparison of ARPES with scanning tunneling microscopy, inelastic neutron scattering (INS), and Raman scattering data. Here we touch on a potential possibility of such a comparison with the dynamical magnetic susceptibility measured in INS experiments. Calculations based on the experimentally measured quasiparticle self-energies in cuprates lead to the estimated magnetic susceptibility response with many-body effects taken into account.Comment: Will be presented at the M2S-HTSC-VIII conference in Dresde

    From tunneling to photoemission: correlating two spaces

    Full text link
    Correlating the data measured by tunneling and photoemission spectroscopies is a long-standing problem in condensed matter physics. The quasiparticle interference, recently discovered in high-Tc cuprates, reveals a possibility to solve this problem. Application of modern phase retrieval algorithms to Fourier transformed tunneling data allows to recover the distribution of the quasiparticle spectral weight in the reciprocal space of solids measured directly by photoemission. This opens a direct way to unify these two powerful techniques and may help to solve a number of problems related with space/time inhomogeneities predicted in strongly correlated electron systems.Comment: more info at http://www.imp.kiev.ua/~kord/AC-ARPES/index.htm

    Determination of critical current density in melt-processed HTS bulks from levitation force measurements

    Full text link
    A simple approach to describe the levitation force measurements on melt-processed HTS bulks was developed. A couple of methods to determine the critical current density JcJ_c were introduced. The averaged abab-plane JcJ_c values for the field parallel to this plane were determined. The first and second levitation force hysteresis loops calculated with these JcJ_c values coincide remarkably well with the experimental data.Comment: 10 pages (tex), 2 figures (in jpeg

    Singular Fermi Surfaces II. The Two--Dimensional Case

    Full text link
    We consider many--fermion systems with singular Fermi surfaces, which contain Van Hove points where the gradient of the band function ke(k)k \mapsto e(k) vanishes. In a previous paper, we have treated the case of spatial dimension d3d \ge 3. In this paper, we focus on the more singular case d=2d=2 and establish properties of the fermionic self--energy to all orders in perturbation theory. We show that there is an asymmetry between the spatial and frequency derivatives of the self--energy. The derivative with respect to the Matsubara frequency diverges at the Van Hove points, but, surprisingly, the self--energy is C1C^1 in the spatial momentum to all orders in perturbation theory, provided the Fermi surface is curved away from the Van Hove points. In a prototypical example, the second spatial derivative behaves similarly to the first frequency derivative. We discuss the physical significance of these findings.Comment: 68 pages LaTeX with figure

    An ARPES view on the high-Tc problem: phonons vs spin-fluctuations

    Full text link
    We review the search for a mediator of high-Tc superconductivity focusing on ARPES experiment. In case of HTSC cuprates, we summarize and discuss a consistent view of electronic interactions that provides natural explanation of both the origin of the pseudogap state and the mechanism for high temperature superconductivity. Within this scenario, the spin-fluctuations play a decisive role in formation of the fermionic excitation spectrum in the normal state and are sufficient to explain the high transition temperatures to the superconducting state while the pseudogap phenomenon is a consequence of a Peierls-type intrinsic instability of electronic system to formation of an incommensurate density wave. On the other hand, a similar analysis being applied to the iron pnictides reveals especially strong electron-phonon coupling that suggests important role of phonons for high-Tc superconductivity in pnictides.Comment: A summary of the ARPES part of the Research Unit FOR538, http://for538.wmi.badw.d

    Electronic band structure of optimal superconductors: from cuprates to ferropnictides and back again

    Get PDF
    While the beginning decade of the high-Tc cuprates era passed under domination of local theories, Abrikosov was one of the few who took seriously the electronic band structure of cuprates, stressing the importance of an extended Van Hove singularity near the Fermi level. These ideas have not been widely accepted that time mainly because of a lack of experimental evidence for correlation between saddle point position and superconductivity. In this short contribution, based on the detailed comparison of the electronic band structures of different families of cuprates and iron based superconductors I argue that a general mechanism of the Tc enhancement in all known high-Tc superconductors is likely related with the proximity of certain Van Hove singularities to the Fermi level. While this mechanism remains to be fully understood, one may conclude that it is not related with the electron density of states but likely with some kind of resonances caused by a proximity of the Fermi surface to topological Lifshitz transition. One may also notice that the electronic correlations often shifts the electronic bands to optimal for superconductivity positions
    corecore