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Abstract

Angle resolved photoemission spectroscopy (ARPES) provides a detailed view of the renormalized band structure
in cuprates and, consequently, is a key to the self-energy and the quasiparticle Green’s function. Such information
gives a clue to the comparison of ARPES with scanning tunneling microscopy, inelastic neutron scattering (INS), and
Raman scattering data. Here we touch on a potential possibility of such a comparison with the dynamical magnetic
susceptibility measured in INS experiments. Calculations based on the experimentally measured quasiparticle self-
energies in cuprates lead to the estimated magnetic susceptibility response with many-body effects taken into account.
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The normal-state Lindhard response function
(polarization operator) is related to the quasipar-
ticle Green’s function via a simple autocorrelation
formula [1]:

χ0(Q, Ω)∝−2i

∫
G(k, ω)G(k + Q, ω + Ω)d2kdω (1)

Apart from the bare band structure, equation (1)
also holds for the renormalized Green’s function.

Knowing the Lindhard response function χ0

(which is also known as the bare spin susceptibility),
one can obtain from RPA the dynamic spin suscep-
tibility χ [2], the imaginary part of which is directly
proportional to the measured INS intensity [3]:

χ(Q, Ω) = χ0(Q, Ω)/[1 + JQ χ0(Q, Ω)] (2)

The coefficient JQ in the denominator of (2) de-
scribes the effective four-point vertex (Hubbard in-
teraction or superexchange), which can be refined to
the required degree of accuracy, although for many
applications its k-dependence is neglected [4]. In our
calculations we assume JQ = J0 [cosQxa+cosQya].

Following these formulae, it is straightforward to
conclude that knowing the real and imaginary parts
of the Green’s function leads us to a comparison of
ARPES results with the INS data. Although this
idea was discussed earlier [1,4,5,6], the calculations
based on real ARPES data were not yet performed.
The imaginary part of the Green’s function is di-
rectly related to the measured ARPES intensity
(although it can be affected by several factors).
The real part can be obtained if one knows the
self-energy, which is also a routine self-consistent
Kramers-Kronig procedure in the state of the art
ARPES data processing [7,8]. Thus, it is possible
to calculate the magnetic susceptibility response
basing on the experimental ARPES spectra.

In the superconducting state, the anomalous
Green’s function additionally contributes to χ0,
which can not be taken into account from ARPES
data. On the other hand, as this additional term
is additive, we argue that all features observed in
the first (“normal”) term, including the resonance
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Fig. 1. The modeled (left) and experimental (right) ARPES spectra of the antibonding band at (π, 0) point (A), along a shifted
cut in the same direction (B) and along the nodal direction (C) in OD Bi-2212 at 50 K. The model images correspond to the
20 meV energy resolution and 0.025 Å−1 angular resolution. Panel D shows the energy distribution curves along the dashed
lines in the antinodal spectra. The Kramers-Kronig consistent real (Σ′) and imaginary (Σ′′) parts of the nodal self-energy used
in the calculation are shown on panel E.

mode, will be still present in the resulting Lind-
hard function, so we content ourselves with the
consideration of the first term only, even in the
superconducting state.

In order to exclude the effect of matrix elements
and experimental resolution, we modeled the spec-
tra using the self-energy based on the bare electron
dispersion studied in [8] and a self-energy model
involving quadratic scattering rate, kink of given
width, height and position, and a density of states
pile-up peak located at the kink energy and char-
acterized by the relative amplitude and width. The
real part of the self-energy was calculated by the
Kramers-Kronig procedure. Self-energy parameters
were specified independently for the nodal and anti-
nodal parts of the spectra, with a d-wave interpo-
lation between these two directions. The supercon-
ducting gap was specified in the anti-nodal direc-
tion, vanishing in the d-wave manner to the nodes.
For posterior calculations, all the free parameters
were adjusted during comparison with a set of ex-
perimental ARPES spectra in order to achieve the
best correspondence (Fig. 1).

Basing on the model dataset built for optimally
doped Bi-2212 at 50 K, with the superconducting
gap of 30 meV, including bonding and antibond-
ing bands with equal intensities, we have calculated
the Lindhard function in the energy range down to
0.15 eV below the Fermi level in the whole Brillouin
zone. After that we calculated the dynamical spin
susceptibility by adjusting the J0 parameter trying
to reproduce the resonance at (π, π) and the 45◦ ro-

tation of the incommensurate peaks that was most
clearly observed in the INS experiments on YBCO
[9]. The resulting χ (Fig. 2) qualitatively reproduces
the energy resonance at∼40 meV in the (π, π) point,
as well as the four peaks dispersing in the (0, π) and
(π, 0) directions below the resonance and along the
Brillouin zone diagonals for higher energies.

The project is part of the ForschergruppeFOR538.

Fig. 2. Constant energy cuts of the dynamical spin suscep-
tibility obtained from the renormalized Lindhard function
within the RPA approach. The center of each Brillouin zone
image corresponds to the (π, π) point.
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