627 research outputs found

    Chemodynamic subpopulations of the Carina dwarf galaxy

    Get PDF
    We study the chemodynamical properties of the Carina dwarf spheroidal by combining an intermediate spectroscopic resolution dataset of more than 900 red giant and red clump stars, with high-precision photometry to derive the atmospheric parameters, metallicities and age estimates for our targets. Within the red giant branch population, we find evidence for the presence of three distinct stellar sub-populations with different metallicities, spatial distributions, kinematics and ages. As in the Fornax and Sculptor dwarf spheroidals, the subpopulation with the lowest average metallicity is more extended and kinematically hotter than all other populations. However, we identify an inversion in the parallel ordering of metallicity, kinematics and characteristic length scale in the two most metal rich subpopulations, which therefore do not contribute to a global negative chemical gradient. Contrary to common trends in the chemical properties with radius, the metal richest population is more extended and mildly kinematically hotter than the main component of intermediate metallicity. More investigations are required to ascertain the nature of this inversion, but we comment on the mechanisms that might have caused it.Comment: 9 pages, 9 figures, accepted for publication in MNRA

    The AMBRE Project: searching for the closest solar siblings

    Full text link
    Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Sun's birthplace. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. From the about 17000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, alpha- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between -0.03 to 0.03 dex. Our further selection left us with 4 candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the 2 of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD186302 is the most precisely characterized and probably the most probable candidate of our 4 best candidates. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.Comment: Accepted for publication in A&

    Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy

    Get PDF
    Non-axisymmetries in the Galactic potential (spiral arms and bar) induce kinematic groups such as the Hercules stream. Assuming that Hercules is caused by the effects of the outer Lindblad resonance of the Galactic bar, we model analytically its properties as a function of position in the Galaxy and its dependence on the bar's pattern speed and orientation. Using data from the RAVE survey we find that the azimuthal velocity of the Hercules structure decreases as a function of Galactocentric radius, in a manner consistent with our analytical model. This allows us to obtain new estimates of the parameters of the Milky Way's bar. The combined likelihood function of the bar's pattern speed and angle has its maximum for a pattern speed of Omega(b) = (1.89 +/- 0.08) x Omega(0), where Omega(0) is the local circular frequency. Assuming a solar radius of 8.05 kpc and a local circular velocity of 238 km s(-1), this corresponds to Omega(b) = 56 +/- 2km s(-1) kpc(-1). On the other hand, the bar's orientation phi(b) cannot be constrained with the available data. In fact, the likelihood function shows that a tight correlation exists between the pattern speed and the orientation, implying that a better description of our best fit results is given by the linear relation Omega(b)/Omega(0) = 1.91+0.0044 (phi(b)(deg) - 48), with standard deviation of 0.02. For example, for an angle of phi(b) = 30 deg the pattern speed is 54.0 +/- 0.5 km s(-1) kpc(-1). These results are not very sensitive to the other Galactic parameters such as the circular velocity curve or the peculiar motion of the Sun, and are robust to biases in distance

    Chromospherically Active Stars in the RAVE Survey. I. The Catalogue

    Get PDF
    RAVE, the unbiased magnitude limited survey of the southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the CaII IRT range which is a known indicator of chromospheric activity. Our previous work (Matijevi\v{c} et al. 2012) classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-LTE profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5\AA\ wide interval and their sum EW_IRT for ~44,000 candidate active dwarf stars with S/N>20 and with no respect to the source of their emission flux. From these ~14,000 show a detectable chromospheric flux with at least 2\sigma\ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and in some cases radial velocities of active stars derived from automatic pipeline suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre main-sequence cases. The catalogue will be publicly available with the next RAVE public data releases.Comment: 13 pages, 9 figure

    The imprints of the Galactic Bar on the Thick Disk with RAVE

    Get PDF
    We study the kinematics of a local sample of stars, located within a cylinder of 500 pc radius centered on the Sun, in the RAVE data set. We find clear asymmetries in the v R v∞ velocity distributions of thin and thick disk stars: there are more stars moving radially outward for low azimuthal velocities and more radially inward for high azimuthal velocities. Such asymmetries have been previously reported for the thin disk as being due to the Galactic bar, but this is the first time that the same type of structures are seen in the thick disk. Our findings imply that the velocities of thick-disk stars should no longer be described by Schwarzschilds, multivariate Gaussian or purely axisymmetric distributions. Furthermore, the nature of previously reported substructures in the thick disk needs to be revisited as these could be associated with dynamical resonances rather than to accretion events. It is clear that dynamical models of the Galaxy must fit the 3D velocity distributions of the disks, rather than the projected 1D, if we are to understand the Galaxy fully

    Weighing the local dark matter with RAVE red clump stars

    Get PDF
    We determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we build a sample of 4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1kpc Kz/(2piG) = 68.5 pm 1.0 Msun/pc2, and (ii) at 2 kpc Kz/(2piG) = 96.9 pm 2.2 Msun/pc2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density rhoDM (z=0) = 0.0143 pm 0.0011Msun pc3 = 0.542 pm 0.042 Gev/cm3 and the baryonic surface mass density Sigma = 44.4 pm 4.1 Msun/pc2 . Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce such a high local density in combination with a circular velocity of 240 km/s . Another explanation, allowing for a lower circular velocity, could be the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion of multiple small dwarf galaxies, or from the presence of an effective phantom thick disc in the context of effective galactic-scale modifications of gravity.Comment: 14 pages, 13 figures, accepted to Astronomy and Astrophysic
    corecore