19 research outputs found

    Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    Get PDF
    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addresse

    The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease

    No full text
    Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention

    Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: a prospective observational study

    Get PDF
    BACKGROUND: Impaired gastric emptying is common in critically ill patients. Intestinal dysmotility, a major cause of feed intolerance, may foster infectious complications due to mucosal barrier disruption. However, little is known about gut-directed immune activation, intestinal barrier function and its association with impaired gastric emptying in critically ill patients at ICU admission. METHODS: We conducted a prospective observational study at two tertiary care medical ICUs. Fifty consecutive patients needing invasive mechanical ventilation were recruited within 24 h of ICU admission, prior to any nutritional support. The acute physiology and chronic health evaluation (APACHE) II score, the sequential organ failure assessment (SOFA) score and the multiple organ dysfunction score (MODS) were used to assess illness severity and multiple organ dysfunction. Gastric emptying was assessed by paracetamol absorption test. Peripheral blood mononuclear cells were freshly isolated and cultured for 24 h, and TNF-α, IL-1ÎČ and IL-10 measured in cell culture supernatants and in serum by ELISA. The intestinal epithelial barrier was assessed, quantifying serum concentrations of intestinal fatty acid binding protein (I-FABP), ileal bile-acid binding protein (I-BABP) and zonulin-1 by ELISA. Small bowel homing T lymphocytes (CD4+ α4ÎČ7 + CCR9+) were analyzed by flow cytometry. The Mann-Whitney test and Spearman correlation were used in statistical evaluation. RESULTS: CD4 + α4ÎČ7 + CCR9+ T lymphocytes were inversely correlated with gastric emptying. Patients with delayed gastric emptying at ICU admission (n = 35) had significantly higher serum and PBMC-induced TNF-α and IL-1ÎČ and increased intestinal barrier disruption reflected by higher I-FABP, I-BABP and zonulin-1. Patients who died in the ICU had significantly impaired gastric empting at admission compared to ICU survivors. No differences were observed in APACHE II, SOFA or MODS in patients with delayed gastric emptying compared to patients with normal gastric emptying. CONCLUSIONS: Exaggerated CD4 + α4ÎČ7 + CCR9+ T lymphocyte homing with increased pro-inflammatory cytokine release and intestinal epithelial barrier disruption are associated with delayed gastric emptying. This is not simply due to differences in overall severity of illness at ICU admission and may represent a pathophysiological mechanism of gut-directed immune activation leading to impaired barrier function in the critically ill

    The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease

    No full text
    Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention

    CD133 allows elaborated discrimination and quantification of haematopoietic progenitor subsets in human haematopoietic stem cell transplants

    No full text
    Summary The success of haematopoietic stem cell (HSC) transplantation largely depends on numbers of transplanted HSCs, which reside in the CD3

    Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness

    No full text
    Treatment with extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been suggested as novel therapeutic option in acute inflammation-associated disorders due to their immune-modulatory capacities. As we have previously observed differences in the cytokine profile of independent MSC-EV preparations, functional differences of MSC-EV preparations have to be considered. To evaluate the immune-modulatory capabilities of specific MSC-EV preparations, reliable assays are required to characterize the functionality of MSC-EV preparations prior to administration to a patient. To this end, we established an in vitro assay evaluating the immune-modulatory capacities of MSC-EV preparations. Here, we compared the efficacy of four independent MSC-EV preparations to modulate the induction of T cell differentiation and cytokine production after phorbol 12-myristate 13-acetate (PMA)/Ionomycin stimulation of peripheral blood mononuclear cells (PBMC) derived from six healthy donors. Flow cytometric analyses revealed that the four MSC-EV preparations differentially modulate the expression of surface markers, such as CD45RA, on CD4+ and CD8+ T cells, resulting in shifts in the frequencies of effector and effector memory T cells. Moreover, cytokine profile in T cell subsets was affected in a MSC-EV-specific manner exclusively in CD8+ naïve T cells. Strikingly, hierarchical clustering revealed that the T cell response towards the MSC-EV preparations largely varied among the different PBMC donors. Thus, besides defining functional activity of MSC-EV preparations, it will be crucial to test whether patients intended for treatment with MSC-EV preparations are in principal competent to respond to the envisioned MSC-EV therapy

    Pre-Transplant Serum Leptin Levels and Relapse of Acute Myeloid Leukemia after Allogeneic Transplantation

    No full text
    Weight loss and metabolic activity influence outcome after allogeneic stem cell transplantation (alloSCT). This study evaluates pre-conditioning Leptin, a peptide hormone involved in metabolism and immune homeostasis, as a prognostic factor for survival, relapse and non-relapse mortality (NRM) following alloSCT. Leptin serum levels prior to conditioning were determined in a cohort of patients transplanted for various hematologic malignancies (n = 524) and correlated retrospectively with clinical outcome. Findings related to patients with acute leukemia (AL) from this sample were validated in an independent cohort. Low pre-conditioning serum Leptin was an independent prognostic marker for increased risk of relapse (but not of NRM and overall mortality) following alloSCT for AL of intermediate and advanced stage (beyond first complete remission). Multivariate analysis revealed a hazard ratio (HR) for relapse of 0.75 per log2 increase (0.59–0.96, p = 0.020). This effect was similar in an independent validation cohort. Pre-conditioning serum Leptin was validated as a prognostic marker for early relapse by fitting the multivariate Cox model to the validation data. Pre-conditioning serum Leptin levels may serve as an independent prognostic marker for relapse following alloSCT in intermediate and advanced stage AL patients. Prospective studies are required to prove whether serum Leptin could be used for guiding nutritional intervention in patients with AL undergoing alloSCT
    corecore